Zikri, Arizal Akbar
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Convolutional Neural Networks-Based For Predicting Aerodynamic Coefficient Of Airfoils At Ultra-Low Reynolds Number Kasman, Alief Sadlie; Zikri, Arizal Akbar; Fariduzzaman, Fariduzzaman; Srigutomo, Wahyu
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.2197

Abstract

Many applications, including airplane design, wind turbines, and heat transmission, use symmetric or asymmetric airfoils. Engineers employ these airfoil shapes to optimize performance and efficiency. Each airfoil has a unique set of aerodynamic coefficients that must be calculated to maximize the airfoil design. Engineers utilize numerous ways to calculate coefficients, such as lift and drag. One of the methods is the prediction method, which effectively reduces time and cost. This study's training dataset is obtained from particle-based numerical computation using the Lattice Boltzmann Method (LBM). Then, Convolutional Neural Networks (CNN) are used as a prediction method to get the aerodynamic coefficients of airfoils for lift and drag based on two different Reynolds numbers. In CNN, airfoil geometry representation is essential. The Signed Distance Function (SDF) was used to convert airfoil geometry into RGB pictures. On the other hand, the SDF method cannot explain different flow conditions; in this case, it is represented by the Reynolds number (Re). Therefore, we propose a Text-based Watermarking Method (TWM) to differentiate between Re = 500 and Re = 1000. Each airfoil representation was trained and tested to generate each prediction model using a modified LeNet-5. The computation results show that using CNN with TWM on SDF to define the Reynolds numbers could predict the lift and drag coefficients with varying angles of attack. Future research can focus on generalizations to different aerodynamic aspects and practical applications in complex scenarios.
Geometry Representation Effectiveness in Improving Airfoil Aerodynamic Coefficient Prediction with Convolutional Neural Network Zikri, Arizal Akbar; Defianti, Hanni; Hidayat, Wahyu; Purqon, Acep
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1577

Abstract

Many applications use symmetric or asymmetric airfoils, such as aircraft design, wind turbines, and heat transfer. Each airfoil has different aerodynamic coefficients. Obtaining the aerodynamic coefficients is a must to optimize the airfoil design. Engineers use various methods to get the airfoil aerodynamic coefficients. A prediction method is an approximation approach that effectively reduces time and cost. This article uses convolutional neural networks (CNN) to get approximation values of those coefficients. In CNN, we collect 8920 aerodynamic coefficients for 223 NACA 4 as labels in datasets by using XFOIL at  and  with varying angles of attacks starting  to  with increment of . The simulation results are compared to the experiment using E387 airfoil for validation. Then, airfoil geometries as part of input datasets were transformed into Grayscale and RGB images using the signed distance function (SDF) and mesh algorithm. Each airfoil representation was trained using an 80% dataset and tested using a 20% dataset with Adam as an optimizer to generate each prediction model using modified LeNet-5. We use three different layer depths in modified LeNet-5 to obtain the optimal layer number. There is no remarkable improvement when varying the depth layers, so four layers are used instead. Simulation results show that using an SDF with Fast Marching Method on CNN predicts the most effective for the airfoil’s lift, drag, and pitch moment coefficient with varying angles of attack simultaneously. One can extend the method by using SDF to recognize different flow conditions.