Claim Missing Document
Check
Articles

Found 13 Documents
Search

Sistem Inventory Pada PT. Bakrie Autoparts Dengan Pendekatan SCM dan Analisa SWOT Jasmine Celia Sahfitri; Azis Sukma Dhiana; Luci Kanti Rahayu; Ahmad Baroqah Pohan
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 6, No 4 (2023): Agustus 2023
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v6i4.6471

Abstract

Abstrak - PT. Bakrie Autoparts bergerak pada bidang otomotif khususnya mobil, dimana perusahaan ini menghasilkan berbagai macam komponen otomotif (transportasi) diantaranya ada bracket, seat trunnion, brake drum, dan lain-lain. Barang hasil produksi sparepart dari PT.Bakrie Autoparts akan di distribusikan ke perusahaan lain diantaranya Mitshubishi, Hino dan toyota. Untuk menjalin kerja sama yang baik dengan perusahaan tersebut, PT.Bakrie Autoparts berusaha untuk memenuhi kebutuhan customer pada komponen otomotif berkualitas tinggi. Untuk menjalin kerja sama yang baik dengan perusahaan tersebut, PT.Bakrie Autoparts berusaha untuk memenuhi kebutuhan customer pada komponen otomotif berkualitas tinggi, maka dibutuhkan analisa SWOT untuk mengembangkan strategi pada PT.Bakrie Autoparts. PT.Bakrie Autoparts dapat menganalisa perencanaan Supply Chain Management untuk meningkatkan keuntungan serta peluang yang lebih besar. Dengan menganalisis perencanaan Supply Chain Management (SCM) perusahaan dapat meningkatkan laba sekaligus menjadi lebih kompetitif. Untuk mempercepat proses persediaan barang agar kebutuhan customer terpenuhi, maka pada penelitian ini dibutuhkan metode pengembangan pada sistem informasi inventory yaitu metode RAD. Dalam penerapan metode RAD ini guna untuk mengimplementasikan sistem informasi inventory barang material, dapat memberikan hasil pada sistem yang optimal dan layak. Selain itu juga dapat meminimalisir waktu dan biaya yang diperlukan perusahaan untuk menjalankan sistem.Kata kunci: inventory, Autoparts, SCM, SWOT Abstract - PT. Bakrie Autoparts is engaged in the automotive sector, especially cars, where this company produces various types of automotive (transportation) components including brackets, trunnion seats, brake drums, and others. The spare parts produced by PT Bakrie Autoparts will be distributed to other companies such as Mitsubishi, Hino and Toyota. In order to establish good cooperation with the company, PT. Bakrie Autoparts strives to meet customer needs for quality automotive components. In order to establish good cooperation with the company, PT. Bakrie Autoparts strives to meet customer needs for quality automotive components, so a SWOT analysis is needed to develop a strategy for PT. Bakrie Autoparts. PT. Bakrie Autoparts can analyze Supply Chain Management planning to increase profits and greater opportunities. By analyzing Supply Chain Management (SCM) planning, companies can increase profits while becoming more competitive. To speed up the process of stocking goods so that customer needs are met, this research requires an inventory information system development method, namely the RAD method. In applying the RAD method to implement a material goods inventory information system, it can provide optimal and feasible system results. Besides that, it can also minimize the time and costs needed by the company to run the system.Keywords: inventory, Autoparts, SCM, SWOT
SiSTEM INFORMASI MANAJEMEN CUTI PEGAWAI BERBASIS WEBSITE PADA PROSUS INTEN JAKARTA Fitriani, Yuni; Rahayu, Luci Kanti; Emiliya, Devi; Syabani, Khofifah Nur; Nabilla, Rizki
Journal of Information System, Applied, Management, Accounting and Research Vol 8 No 4 (2024): JISAMAR (September-November 2024)
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jisamar.v8i4.1638

Abstract

Companies are required to utilize information technology to manage their operational activities more effectively and efficiently. One key aspect of company operational management is employee leave management. Leave refers to a situation where an employee is absent from work due to annual leave, maternity leave, vacations, or other personal reasons that have been officially approved for a specified period. At Prosus Inten, the current process of managing employee leave is still less effective and efficient, as employees must directly contact the attendance management team when submitting a leave request. Consequently, the attendance manager must compile daily attendance records by reviewing and verifying attendance data from emails, as well as checking the list of employees who have submitted leave requests. The system development model used in this study is the waterfall model. With the implementation of a web-based employee leave management information system, Prosus Inten is assisted in the management of employee leave, and employees are aided in the leave request submission process. Furthermore, the system enables employees to conveniently track their remaining leave balance as well as the number of leave days already used.
Model Klasifikasi Risiko Stunting Pada Balita Menggunakan Algoritma CatBoost Classifier Pahlevi, Omar; Wulandari, Dewi Ayu Nur; Rahayu , Luci Kanti; Leidiyana, Henny; Handrianto, Yopi
Bulletin of Computer Science Research Vol. 4 No. 6 (2024): Oktober 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v4i6.373

Abstract

Stunting is a significant health issue in Indonesia, affecting the growth and development of young children and influenced by various complex risk factors such as nutrition, environment, and access to healthcare services. The manual process of identifying stunting risks often requires considerable time, resources, and specialized expertise from medical professionals. This study aims to develop a stunting risk classification model for young children using machine learning through the CatBoost Classifier algorithm. This algorithm was chosen for its advantages in handling categorical variables without requiring complex encoding processes and its ability to manage imbalanced data, ultimately improving prediction accuracy. In the conducted case study, the model's prediction updates were illustrated by increasing the initial prediction from 0.25 to 0.27 after accounting for residual corrections in the first iteration, with a learning rate of 0.1. This process demonstrates CatBoost's iterative mechanism for improving model predictions through gradual updates. Evaluation results showed that the developed model achieved an accuracy of 98.47% and a ROC-AUC score of 1.00 for several classes, indicating a high capability in accurately classifying stunting risks. These findings suggest that the CatBoost algorithm is effective for stunting risk classification, capable of handling data complexity, and expected to contribute significantly to supporting stunting prevention efforts through improved early detection.