Claim Missing Document
Check
Articles

Found 5 Documents
Search

ANALYSIS OF WARGANET COMMENTS ON IT SERVICES IN MANDIRI BANK USING K-NEAREST NEIGHBOR (K-NN) ALGORITHM BASED ON ITSM CRITERIA Ramadhan, Febrian Wahyu; Sukmana, Husni Teja; Oh, Lee Kyung; Wardhani, Luh Kesuma
ADI Journal on Recent Innovation (AJRI) Vol 1 No 1 (2019): AJRI (ADI Journal on Recent Innovation)
Publisher : Pandawan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34306/ajri.v1i1.91

Abstract

Sentiment analysis is a method for reviewing products or services to determine opinions or feelings about a product. The results of the analysis can be used by companies as evaluation materials and considerations to improve the products or services provided. This study aims to test the level of public sentiment on the quality of Bank Mandiri services that have received ISO 20000-1 with the application of sentiment analysis using the K-NN algorithm based on ITSM criteria. The initial classification in this study uses the lexicon method by detecting words included in sentiment words, the results of which are included as labels on training data and test data. Formation of the classification with the K-NN algorithm by taking into account the results of the training data indexing and weighting of the test data, with the value of k as the decision maker limit. The trial results of 10 scenarios show that the classification using the K-NN algorithm as a sentiment classification is 98% accuracy value of 50 test data to 600 training data, with 24% getting positive sentiment, 22% negative sentiment and 55% neutral sentiment, with f -measure 95.83%. while in testing 100 the test data obtained 79% accuracy value with 21% getting positive sentiment, 42% negative sentiment and 38% neutral with an f-measure value of 68.42%.
A Comparative Study of Naive Bayes, SVM, and Decision Tree Algorithms for Diabetes Detection Based on Health Datasets Nurwicaksana, Satria; Oh, Lee Kyung; Sukmana, Husni Teja
International Journal of Informatics and Information Systems Vol 7, No 4: December 2024
Publisher : International Journal of Informatics and Information Systems

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/ijiis.v7i4.230

Abstract

Diabetes is a chronic, progressive condition whose global prevalence continues to rise, creating substantial public health and economic burdens. Early diagnosis and timely intervention are critical to preventing severe complications and improving long-term patient outcomes. In recent years, artificial intelligence (AI) particularly machine learning (ML) has emerged as a powerful tool in medical diagnostics, offering capabilities in automated pattern recognition and disease classification. This study aims to evaluate and compare the predictive performance of three supervised ML algorithms such as Naïve Bayes, Support Vector Machine (SVM), and Decision Tree for classifying and predicting diabetes based on two primary physiological indicators: glucose level and blood pressure. The dataset employed was sourced from Kaggle, comprising 995 patient records containing relevant clinical attributes. The research methodology involved several stages, including data preprocessing to ensure quality and consistency, data partitioning into training and testing subsets using an 80:20 split ratio, model training, and performance evaluation. Each algorithm’s effectiveness was measured using accuracy, precision, recall, and F1-score metrics. The experimental findings demonstrate that the Decision Tree algorithm achieved the highest classification accuracy (94.47%), outperforming SVM and Naïve Bayes, both of which recorded 92.96% accuracy. Moreover, the Decision Tree exhibited balanced precision and recall values, underscoring its robustness in identifying both diabetic and non-diabetic cases with minimal misclassification. These outcomes indicate that the Decision Tree model provides an optimal balance between predictive accuracy and interpretability, making it particularly suitable for clinical decision-support applications.
Improving Indonesian Named Entity Recognition for Domain Zakat Using Conditional Random Fields Widiyanti, Nur Febriana; Sukmana, Husni Teja; Hulliyah, Khodijah; Khairani, Dewi; Oh, Lee Kyung
JOIN (Jurnal Online Informatika) Vol 8 No 2 (2023)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v8i2.898

Abstract

In Indonesia, where the majority of the population is Muslim, one of the obligations of a Muslim is zakat. To reduce illiteracy about zakat among Muslims, they need to have access to basic information about it. In order to facilitate the acquisition of this information, this study utilized named entity recognition (NER) and defined 12 named entity classes for the zakat domain, including the pillars of Islam, various types of zakat, and zakat management institutions. The Conditional Random Fields method was used for testing Indonesian-NER in three scenarios. In the specific context of the Zakat domain, NER can extract information about organizations, individuals, and locations involved in collecting and distributing Zakat funds. This information can improve the Zakat system’s efficiency and transparency and support research and analysis on Zakat-related topics. The average performance evaluation of the Indonesian-NER model showed a precision of 0.902, recall of 0.834, and an F1-score of 0.867.
Using K-Means Clustering to Enhance Digital Marketing with Flight Ticket Search Patterns Sukmana, Husni Teja; Oh, Lee Kyung
Journal of Digital Market and Digital Currency Vol. 1 No. 3 (2024): Regular Issue December
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jdmdc.v1i3.22

Abstract

This study explores the application of K-Means clustering to enhance digital marketing strategies by analyzing flight ticket search patterns. Utilizing a dataset containing 4,000 search engine results related to flights to Hong Kong, the research identifies five distinct user clusters based on search terms, titles, snippets, and other relevant features. The dataset's key features include search terms, ranks, titles, snippets, display links, and direct links, providing a comprehensive view of user interactions and preferences. The cluster analysis reveals significant variations in user intent and preferences across the identified segments. For instance, Cluster 1 is characterized by users searching for "cheap flights" and "discount tickets," indicating a price-sensitive segment. In contrast, Cluster 2 users prefer "premium flights" and "business class," highlighting an interest in luxury travel options. The study also examines the behavioral patterns within each cluster, such as Cluster 3 users who search for flights well in advance and prioritize flexible booking options. The findings underscore the effectiveness of K-Means clustering in enhancing digital marketing strategies. By leveraging the insights from the clustering analysis, marketers can design highly targeted advertising campaigns and personalized offers. For example, budget airlines can target Cluster 1 with promotions and discounts, while premium airlines can focus on Cluster 2 with exclusive service highlights. This targeted approach is expected to improve user engagement and conversion rates significantly. The study also highlights the advantages of behavior-based segmentation over traditional demographic methods, offering a more accurate representation of user preferences and intentions. The identified clusters provide a framework for understanding different user groups, enabling more efficient resource allocation and campaign design. Future research should explore the integration of additional data sources, such as social media interactions and user reviews, to enhance clustering accuracy. Additionally, advanced clustering techniques like hierarchical clustering and Gaussian Mixture Models could be investigated to provide further insights. The ongoing refinement and enhancement of segmentation processes are crucial for maintaining effective and impactful digital marketing strategies in the dynamic travel industry. Key results include the identification of five user clusters, the importance of personalized marketing strategies, and the potential for improved engagement and conversion rates through targeted advertising and offers.
A Comprehensive Study on Public and Private Blockchain Performance Oh, Lee Kyung; Sukmana, Husni Teja
Journal of Current Research in Blockchain Vol. 2 No. 1 (2025): Regular Issue March
Publisher : Bright Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jcrb.v2i1.25

Abstract

Blockchain technology has emerged as a transformative innovation, with applications spanning diverse industries. This study provides a comprehensive comparison between public and private blockchains, focusing on six key dimensions: scalability, security, use case distribution, energy efficiency, developer ecosystem, and performance metrics. Data were collected from 30 blockchain systems, representing a wide range of consensus mechanisms and industry applications. The findings reveal significant trade-offs between the two blockchain types. Public blockchains, such as Bitcoin and Ethereum, excel in decentralization and transparency, making them ideal for open and trustless environments like cryptocurrency and decentralized finance (DeFi). However, they face limitations in scalability, high energy consumption, and slower transaction speeds. Conversely, private blockchains, such as Hyperledger Fabric and Corda, demonstrate superior scalability, energy efficiency, and privacy, making them more suitable for controlled environments like healthcare, supply chain management, and enterprise financial services. The study underscores the importance of aligning blockchain technology selection with specific application requirements. Furthermore, it highlights the potential of hybrid blockchain models to integrate the strengths of both public and private systems, addressing existing limitations. These findings provide valuable insights for organizations and developers in leveraging blockchain technologies effectively.