Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Computer Science and Information Technology (CoSciTech)

Penerapan analytic hierarchy process (AHP) pada sistem pendukung keputusan penerima bantuan pangan non tunai (BPNT) Fahadaena, Rinaldi Nur; Dasuki, Moh.; Yanuarti, Rosita
Computer Science and Information Technology Vol 4 No 3 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i3.4946

Abstract

Indonesia adalah salah satu negara yang berkembang, sebagian besar dari penduduknya bergantung pada pertanian yang menjadi sumber penghidupan. Namun, banyaknya masyarakat yang masih kesulitan untuk mencukupi kebutuhan hidupnya. Program Bantuan Pangan Non Tunai (BPNT) merupakan kategori bantuan sosial pangan yang didistribusikan oleh otoritas publik dalam struktur nontunai kepada pihak Keluarga Penerima Manfaat (KPM) yang mempunyai Kartu Keluarga Sejahtera (KKS) melalui sistem pencatatan elektronik. Sistem Pendukung Keputusan merupakan suatu sistem berbasis komputer yang ditujukan untuk membantu pengambil keputusan dalam memanfaatkan data dan model tertentu untuk memecahkan berbagai persoalan yang tidak terstruktur. Analytical Hierarchy Process (AHP) merupakan teknik yang mampu membantu dalam mengevaluasi kriteria dan alternatif untuk proses pengambilan keputusan secara kompleks. Oleh karena itu, penggunaan metode AHP dalam proses pemilihan calon penerima bantuan BPNT dapat membantu dalam menentukan prioritas kriteria dan alternatif yang ada, sehingga proses pengambilan keputusan menjadi lebih mudah dan tepat.
Implementasi Manajemen Bandwidth Simple Queue Sebagai Optimalisasi Layanan Jaringan Internet Warga Menggunakan Metode NDLC Miftahur Rahman; Moh. Dasuki; Hardian Oktavianto
Computer Science and Information Technology Vol 5 No 1 (2024): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v5i1.6899

Abstract

Krajan Hamlet, one of the areas in Jember Regency, has built an RT-RW Net network which aims to make it easier for the community or residents there to use the internet network for education, work and so on at relatively low costs. However, there is a problem, namely that using the internet network often causes buffering and even the network goes down if used simultaneously because the bandwidth is not limited to each user or client. The solution is to carry out simple queue bandwidth management. The completion steps in this research use the Network Development Life Cycle (NDLC) method. Resulting in research that the simple queue bandwidth management that has been carried out can be applied to the RT/RW Net network infrastructure that has been built, it was proven that when conducting bandwidth testing there was no bandwidth that exceeded the maximum limit that had been determined, namely the 20 Mbps bandwidth provided by the ISP divided into 5 Mbps for the Admin and for each client, they get a bandwidth of 3 Mbps, and when testing the network quality based on QoS calculations it can be categorized as good.
Optimasi Metode Certainty Factor Menggunakan Rank Order Centroid Pada Sistem Pakar Pendeteksi Turnover Intention Berbasis WEB Muhammad Maulana Akbar; Moh. Dasuki; Miftahur Rahman
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9869

Abstract

Turnover intention, or the tendency of employees to resign, poses a significant challenge for companies—especially when dealing with Generation Z, who tend to have lower job commitment and are more likely to switch jobs. This study aims to develop a web-based expert system to detect the level of employee turnover intention by integrating the Certainty Factor (CF) and Rank Order Centroid (ROC) methods. The CF method is used to handle uncertainty in questionnaire assessments, while ROC is implemented to optimize the weights among aspects, namely Thinking of Quitting, Intention to Search for Alternatives, and Intention to Quit. The system is built based on 36 questionnaire statements and tested on 34 respondents. The results show that the system provides more proportional and realistic interpretations compared to the non-optimized approach. Accuracy testing indicates that 27 out of 34 system results match manual assessments, yielding an accuracy rate of 79.41%. These findings suggest that the system performs reliably and can serve as a practical tool for the early detection of turnover intention in the workplace.