Alzaqebah, Malek
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Cuckoo algorithm with great deluge local-search for feature selection problems Khalil Alsmadi, Mutasem; Alzaqebah, Malek; Jawarneh, Sana; Brini, Sami; Al-Marashdeh, Ibrahim; Briki, Khaoula; Alrefai, Nashat; Ali Alghamdi, Fahad; Al-Rashdan, Maen T.
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp4315-4326

Abstract

Feature selection problem is concerned with searching in a dataset for a set of features aiming to reduce the training time and enhance the accuracy of a classification method. Therefore, feature selection algorithms are proposed to choose important features from large and complex datasets. The cuckoo search (CS) algorithm is a type of natural-inspired optimization algorithms and is widely implemented to find the optimum solution for a specified problem. In this work, the cuckoo search algorithm is hybridized with a local search algorithm to find a satisfactory solution for the problem of feature selection. The great deluge (GD) algorithm is an iterative search procedure, that can accept some worse moves to find better solutions for the problem, also to increase the exploitation ability of CS. The comparison is also provided to examine the performance of the proposed method and the original CS algorithm. As result, using the UCI datasets the proposed algorithm outperforms the original algorithm and produces comparable results compared with some of the results from the literature.
A hybrid DMO-CNN-LSTM framework for feature selection and diabetes prediction: a deep learning perspective Alsmadi, Mutasem K.; Jaradat, Ghaith M.; Alsallak, Tariq; Alzaqebah, Malek; Jawarneh, Sana; Alfagham, Hayat; Alqurni, Jehad; Badawi, Usama A.; Almusfar, Latifa Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5555-5569

Abstract

The early and accurate prediction of diabetes mellitus remains a significant challenge in clinical decision-making due to the high dimensionality, noise, and heterogeneity of medical data. This study proposes a novel hybrid classification framework that integrates the dwarf mongoose optimization (DMO) algorithm for feature selection with a convolutional neural network–long short-term memory (CNN-LSTM) deep learning architecture for predictive modeling. The DMO algorithm is employed to intelligently select the most informative subset of features from a large-scale diabetes dataset collected from 130 U.S. hospitals over a 10-year period. These optimized features are then processed by the CNN-LSTM model, which combines spatial pattern recognition and temporal sequence learning to enhance predictive accuracy. Extensive experiments were conducted and compared against traditional machine learning models (logistic regression, random forest, XGBoost), baseline deep learning models (MLP, standalone CNN, standalone LSTM), and state-of-the-art hybrid classifiers. The proposed DMO-CNN-LSTM model achieved the highest classification performance with an accuracy of 96.1%, F1-score of 94.6%, and ROC-AUC of 0.96, significantly outperforming other models. Additional analyses, including confusion matrix, ROC curves, training convergence plots, and statistical evaluations confirm the robustness and generalizability of the approach. These findings suggest that the DMO-CNN-LSTM framework offers a powerful and interpretable tool for intelligent diabetes prediction, with strong potential for integration into real-world clinical decision-support systems.
Improving network security using deep learning for intrusion detection Al-Shabi, Mohammed; Abuhamdah, Anmar; Alzaqebah, Malek
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5570-5583

Abstract

As cyber threats and network complexity grow, it is crucial to implement effective intrusion detection systems (IDS) to safeguard sensitive data and infrastructure. Traditional methods often struggle to identify sophisticated attacks, necessitating advanced approaches like machine learning (ML) and deep learning (DL). This study explores the application of ML and DL algorithms in IDS. Feature selection techniques, such as correlation and variance analysis, were employed to identify key factors contributing to accurate classification. Tools like WEKA and MATLAB supported data pre-processing and model development. Using the UNSW-NB15 and NSL-KDD datasets, the study highlights the superior performance of random forest (RF) and multi-layer perceptron (MLP) algorithms. RF ensemble decision trees and MLP multi-layered architecture enable accurate attack detection, demonstrating the potential of these advanced techniques for enhanced network security.