Premkumar, Manoharan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Review on Solar PV Based Grid Connected Microinverter Control Schemes and Topologies Premkumar, Manoharan; Karthick, Kanagarathinam; Sowmya, Rayichandran
International Journal of Renewable Energy Development Vol 7, No 2 (2018): July 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.2.171-182

Abstract

From the last decade, there is an increase in the demand of electricity, this will causing depletion in the fossil fuels which results increase in cost. So the focus is shifted to use of renewable energy sources along with the only utility grid but it is not sufficient to supply the power different loads. To overcome these problems, micro-grid (MG) is introduced and it is powered by renewable distributed generation (DG) systems, such as, micro turbines, fuel cells, PV and wind generation due to the limited fossil fuel. Out of the above sources, solar energy provides extraordinary benefits including environmental friendly, surplus availability and low installation cost due to the advanced technology and mass production. The solar grid connected micro inverters gain lot of intention in past few years due to its simple construction, reliability and endurability. Moreover, the grid connected micro inverter has high reliability and it can operate in abnormal conditions also like variations in voltage and current. The micro-inverter has attracted recent market success due to unique features such as lower installation cost, improved energy harvesting, and improved system efficiency. This article gives detailed review on different topologies for grid connected solar PV micro-inverter and suggests the reliable, suitable and efficient topology for micro-inverter.Article History: Received Dec 16th 2017; Received in revised form May 14th 2018; Accepted June 1st 2018; Available onlineHow to Cite This Article: Premkumar, M., Karthick, K and Sowmya, R. (2018) A Review on Solar PV Based Grid Connected Microinverter Control Schemes and Topologies. Int. Journal of Renewable Energy Development, 7(2), 171-182.https://doi.org/10.14710/ijred.7.2.171-182 
Mathematical Modelling of Solar Photovoltaic Cell/Panel/Array based on the Physical Parameters from the Manufacturer’s Datasheet Premkumar, Manoharan; Kumar, Chandrasekaran; Sowmya, Ravichandran
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.7-22

Abstract

This paper discusses a modified V-I relationship for the solar photovoltaic (PV) single diode based equivalent model. The model is derived from an equivalent circuit of the PV cell. A PV cell is used to convert the solar incident light to electrical energy. The PV module is derived from the group of series connected PV cells and PV array, or PV string is formed by connecting the group of series and parallel connected PV panels. The model proposed in this paper is applicable for both series and parallel connected PV string/array systems. Initially, the V-I characteristics are derived for a single PV cell, and finally, it is extended to the PV panel and, to string/array. The solar PV cell model is derived based on five parameters model which requires the data’s from the manufacturer’s data sheet. The derived PV model is precisely forecasting the P-V characteristics, V-I characteristics, open circuit voltage, short circuit current and maximum power point (MPP) for the various temperature and solar irradiation conditions. The model in this paper forecasts the required data for both polycrystalline silicon and monocrystalline silicon panels. This PV model is suitable for the PV system of any capacity. The proposed model is simulated using Matlab/Simulink for various PV array configurations, and finally, the derived model is examined in partial shading condition under the various environmental conditions to find the optimal configuration. The PV model proposed in this paper can achieve 99.5% accuracy in producing maximum output power as similar to manufacturers datasheet.©2020. CBIORE-IJRED. All rights reserved