Yari, Mortaza
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison Between Conventional Design and Cathode Gas Recirculation Design of a Direct-Syngas Solid Oxide Fuel Cell–Gas Turbine Hybrid Systems Part I: Design Performance Azami, Vahid; Yari, Mortaza
International Journal of Renewable Energy Development Vol 6, No 2 (2017): July 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.2.127-136

Abstract

In this paper, a conventional SOFC–GT hybrid system and a SOFC–GT hybrid system with cathode gas recirculation system fueled with syngas as the main source of energy were analyzed and their performances were compared. In the conventional SOFC–GT hybrid system, the incoming air to the cathode was heated at air recuperator and air preheater to meet the required cathode inlet temperature. In the SOFC–GT hybrid system with cathode gas recirculation, besides air recuperator and air preheater, the recirculation of the cathode exhaust gas was also used to meet the required cathode inlet temperature. The system performances have been analyzed by means of models developed with the computer program Cycle–Tempo. A complete model of the SOFC–GT hybrid system with these two configurations evaluated in terms of energy and exergy efficiencies and their performance characteristics were compared. Simulation results show that the electrical energy and exergy efficiencies achieved in the cathode gas recirculation plant (64.76% and 66.28%, respectively) are significantly higher than those obtained in the conventional plant (54.53% and 55.8%). Article History: Received Feb 23rd 2017; Received in revised form May 26th 2017; Accepted June 1st 2017; Available onlineHow to Cite This Article: Azami, V, and Yari, M. (2017) Comparison between conventional design and cathode gas recirculation design of a direct-syngas solid oxide fuel cell–gas turbine hybrid systems part I: Design performance. International Journal of Renewable Energy Development, 6(2), 127-136.https://doi.org/10.14710/ijred.6.2.127-136
Comparison between conventional design and cathode gas recirculation design of a direct-syngas solid oxide fuel cell–gas turbine hybrid systems part II: Effect of temperature difference at the fuel cell stack Azami, Vahid; Yari, Mortaza
International Journal of Renewable Energy Development Vol 7, No 3 (2018): October 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.3.263-267

Abstract

This study focuses on the effect of the temperature difference at the fuel cell stack (ΔTcell) on the performances of the two types of SOFC–GT hybrid system configurations, with and without cathode gas recirculation system. In order to investigation the effect of matching between the SOFC temperature (TSOFC) and the turbine inlet temperature (TIT) on the hybrid system performance, we considered additional fuel supply to the combustor as well as cathode gas recirculation system after the air preheater. Simulation results show that the system with cathode gas recirculation gives better efficiency and power capacity for all design conditions than the system without cathode gas recirculation under the same constraints. As the temperature difference at the cell becomes smaller, the both systems performance generally degrade. However the system with cathode gas recirculation is less influenced by the constraint of the cell temperature difference. The model and simulation of the proposed SOFC–GT hybrid systems have been performed with Cycle-Tempo software.Article History: Received January 16th 2018; Received in revised form July 4th 2018; Accepted October 5th 2018; Available onlineHow to Cite This Article: Azami, V and Yari, M. (2018) Comparison Between Conventional Design and Cathode Gas Recirculation Design of a Direct-Syngas Solid Oxide Fuel Cell–Gas Turbine Hybrid Systems Part II: Effect of Temperature Difference at The Fuel Cell Stack. International Journal of Renewable Energy Development, 7(3), 263-267.http://dx.doi.org/10.14710/ijred.7.3.263-267