Claim Missing Document
Check
Articles

Found 2 Documents
Search

Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells Kongnine, Damgou Mani; Kpelou, Pali; Attah, N’Gissa; Kombate, Saboilliè; Mouzou, Essowè; Djeteli, Gnande; Napo, Kossi
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.29-35

Abstract

This work was focused on carbonizing four tropical fruits shells wastes such as: coconut shells (CS), palmyra shells (PS), doum palm shells (DPS), whole fruit of doum palm (WFDP) and teak wood (TW) used as control. The aim was to investigate the potential of those biochar to be used as an alternative energy source in replacement ofcharcoal. The raw biomasses samples were carbonized under the same conditions and some combustion characteristics of the obtained biochar such as lower calorific value, energy per unit volume associated to bulk density, ash content, moisture content and ash mineral content were investigated. The temperature in the furnace was estimated during carbonization process using a K-type thermocouple. The thermal profile of the studied raw biomasses reveals three phases of carbonization. The biochar yield drops significantly for all biomasses as the final maximum temperature increases. The average yields obtained ranged from 37.81 % for palmyra shells to 27.57 % for the doum palm shells. The highest yield achieved was 42.32 % obtained at 280 °C for palmyra shells, the lowest yield (24.42 %) was recorded at the highest maximum temperature of 590 ° C for doum palm shells. The results of energy parameters of the studied biochar showed that coconut shells charcoal presented the highest lower calorific value (28.059 MJ.kg-1), followed by doum palm shells (26.929 MJ.kg-1) when, with 25.864 MJ.kg-1, whole fruit of doum palm charcoal showed the lowest lower calorific value. Similarly, with the highest bulk density of 0.625 g/cm3 coconut shells charcoal presented the highest energy per unit volume (17536.88 J/cm3), whereas with the lowest bulk density of 0.415 g/cm3, whole fruit of doum palm charcoal presented the lowest energy per unit volume. The ash content analysis showed that whole fruit of doum palm had the highest ash content (18.75 %) and palmyra nut shells charcoal (8.42 %).Teak wood charcoal, took as control, has the highest lower calorific value (32.163 MJ.kg-1), less dense as coconut shell (0.43 g/cm3), his energy per unit of volume is 13830.09 j/cm3 but the lowest value of as content (2.90 %). Among these biomasses charcoals, only whole fruit of doum palm charcoal ash showed a high chloride and sulfide content respectively  9.73 % and 1.75 % in weight. From these results, the produced charcoals could be used as alternative fuels except for whole fruits of doum palm charcoal which chloride and sulfide content were found high. ©2020. CBIORE-IJRED. All rights reserved
Experimental investigation of inter-electrode distance and design in Cymbopogon citratus plant microbial fuel cells for sustainable energy production Attah, N'Gissa; Kongnine, Damgou Mani; Kpelou, Pali; Mouzou, Essowè
International Journal of Renewable Energy Development Vol 14, No 6 (2025): November 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.61269

Abstract

Plant Microbial Fuel Cells (PMFCs) are bioelectrochemical systems that harness plant rhizodeposition to generate electricity. This technology enables electrical energy to be produced while the plant grows. However, the major problem preventing the commercialization of these cells is their low power. In the present study, a systematic investigation was conducted to ascertain the optimal configuration of these cells, with the objective of determining the optimum inter-electrode distance. In the present stidy, the lemongrass  plant (Cymbopogon citratus) was used as the main substrate source, plastic pots and graphite electrodes, while examining three single pair of electrodes configurations (PMFC-A, PMFC-B, PMFC-C), along with a unique configuration with three unaligned cathodes (PMFC-D) and three inter-electrode distances (5cm, 7.5cm and 12.5cm) were examined. The experiment focused on determining electrical parameters, plant mass growth rates and soil characteristics. These variables were measured before and after the experiment. The results indicated that the plant mass growth rate of PMFC-D exhibited the greatest magnitude (80.62%). The organic matter (OM) content in the soil exhibited an increase in each PMFC over the course of the experiment. PMFC-B exhibited the highest values of OM, electrical conductivity, and water content, respectively equal to 15.69%, 376.00µS/cm, and 15.46%. Conversely, it exhibited the lowest pH value (7.37). Electrical parameter measurements have demonstrated that PMFCs with a single pair of electrodes exhibit superior performance in comparison to those with three unaligned cathodes. Similarly, these measurements indicated that for the single pair electrode configuration, an inter-electrode distance of 7.5cm was optimal, yielding a maximum power density of 127mW/m².  The determination of the average internal resistance, open circuit voltage, and power density (PD), along with their standard deviations, demonstrated that PMFC-B exhibited superior performance. Furthermore, an analysis of its autonomy revealed that the PDmin it delivers, even in the absence of sunlight, is 16.90 mW/m². From these results, PMFC-B is the best configuration for lemongrass PMFC.