Kurt, Erol
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improving the Efficiency of a Nuclear Power Plant Using a Thermoelectric Cogeneration System Terzi, Rauf; Kurt, Erol
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.77-84

Abstract

The efficiencies of nuclear power plants are rather poor having the ratio %30 by using the conventional energy/exergy tools. According to that information, large amount of energy is wasted during condensation and thrown out to the environment. Thermoelectric generator (TEG) system has a potential to be used as a heat exchanging technology to produce power with a relatively low efficiency (about 5%) and it can transform the temperature difference into electricity and generate clean electrical energy. In the present study, we offer a novel system to recover the waste heat from a VVER-1000 nuclear power plant. The heat transfer of the TEG is analyzed numerically with respect to the various temperature ranges and constant mass flow rate of the exhaust steam entering the system. In the analyses, different hot temperature ranges (35ºC, 45ºC and 55ºC) and a constant cold temperature (i.e. 18ºC) are used for a HZ-20 thermoelectric module and it has been proven that the designed TEG can produce the maximum output power of 76,956 MW for a temperature difference ∆T=37 and the conversion efficiency of 3.854% sits. The TEG is designed for the condenser of a 1000 MW nuclear power plant. It's shown that about 2.0% increasing in the power plant efficiency is expected by using the selected thermoelectric generator in the condensation cycle.Article History: Received: July 15th 2017; Received:  October 17th 2017; Accepted: February 13rd 2018; Available onlineHow to Cite This Article: Terzi, R. and Kurt, E. (2018), Improving the efficiency of a nuclear power plant using a thermoelectric cogeneration system, Int. Journal of Renewable Energy Development, 7(1), 77-84.https://doi.org/10.14710/ijred.7.1.77-84
Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation Shufat, Salem Alaraby Ali; Kurt, Erol; Hancerlioğulları, Aybaba
International Journal of Renewable Energy Development Vol 8, No 1 (2019): February 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.1.7-13

Abstract

The sun tracking system that lets Parabolic Dish or PV panel orthogonal to the sun radiation during the day, can raise the concentrated sun radiation by up to 40%. The fixed Parabolic Dish cannot generally track the sun trajectory, also the single-axis tracking system can follow the sun in the horizontal direction (azimuth angle), while the two-axis tracker tracks the sun path in both azimuth and altitude angles. Dual axis automated control tracking system, which tracks the sun in two planes (azimuth and altitude) to move a Concentrated Parabolic Dish system to the direction of ray diffusion of sun radiation is studied and designed. The designed tracking system constructed of microcontroller or programmable logic control (PLC) with a digital program that operates sun tracker using driver, gear box to control the angular speed and mechanical torque, supports and mountings. Two steeper motors are modelled to guide the parabolic dish panel perpendicular to the sun's beam. In the present study, simulation scheme of two axis sun tracking system has been developed by operating under Matlab/Simulink. The program models and studies the effectiveness of overall system. The designed tracker has been studied with real data of sun trajectory angles (azimuth and altitude) as well as a Direct Normal Irradiation (DNI) to improve the effectiveness of parabolic dish panel by adding the tracking features to those systems according to the present site.©2019. CBIORE-IJRED. All rights reservedArticle History: Received May 18th 2018; Received in revised form October 8th 2018; Accepted January 6th 2019; Available onlineHow to Cite This Article: Shufat, S.A., Kurt, E, and Hancerlioğulları, A. (2019) Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation. Int. Journal of Renewable Energy Development, 8(1), 7-13.https://doi.org/10.14710/ijred.8.1.7-13