Karnadi, Benny
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Jenis Buah dengan Menggunakan Metode MobileNetv2 dan Inceptionv3 Karnadi, Benny; Handhayani, Teny
Jurnal Eksplora Informatika Vol 14 No 1 (2024): Jurnal Eksplora Informatika
Publisher : Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/eksplora.v14i1.1067

Abstract

Buah merupakan salah satu komoditas pangan yang penting bagi masyarakat. Buah memiliki banyak jenis yang tidak semua orang dapat mengenalinya dengan baik. Paper ini bertujuan untuk menguji metode Convolutional Neural Network (CNN) yaitu MobileNetv2 dan Inceptionv3 untuk mengenali jenis buah. Paper ini menggunakan dataset citra buah sebanyak 288 dari 9 kelas yaitu apel, pisang, ceri, sawo anggur, kiwi, mangga, jeruk, dan strawberry. Eksperimen dijalankan menggunakan data latih sebanyak 80% dan data uji 20%. Performa algoritma diuji menggunkan nilai precision, recall, akurasi, f1-score, dan confusion matriks. Hasil eksperimen menunjukkan bahwa metode MobileNetV2 memperoleh nilai precision, recall, akurasi, dan f1-score masing – masing sebesar 98%, 97%, 97%, dan 97%. Metode Inceptionv3 memperoleh nilai precision, recall, akurasi, dan f1-score masing – masing sebesar 94%, 94%, 94%, dan 94%. Berdasarkan metric evaluasi, kinerja metode MobileNetV2 mengungguli Inceptionv3.
Klasifikasi Jenis Buah dengan Menggunakan Metode MobileNetv2 dan Inceptionv3 Karnadi, Benny; Handhayani, Teny
Eksplora Informatika Vol 14 No 1 (2024): Jurnal Eksplora Informatika
Publisher : Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/eksplora.v14i1.1067

Abstract

Buah merupakan salah satu komoditas pangan yang penting bagi masyarakat. Buah memiliki banyak jenis yang tidak semua orang dapat mengenalinya dengan baik. Paper ini bertujuan untuk menguji metode Convolutional Neural Network (CNN) yaitu MobileNetv2 dan Inceptionv3 untuk mengenali jenis buah. Paper ini menggunakan dataset citra buah sebanyak 288 dari 9 kelas yaitu apel, pisang, ceri, sawo anggur, kiwi, mangga, jeruk, dan strawberry. Eksperimen dijalankan menggunakan data latih sebanyak 80% dan data uji 20%. Performa algoritma diuji menggunkan nilai precision, recall, akurasi, f1-score, dan confusion matriks. Hasil eksperimen menunjukkan bahwa metode MobileNetV2 memperoleh nilai precision, recall, akurasi, dan f1-score masing – masing sebesar 98%, 97%, 97%, dan 97%. Metode Inceptionv3 memperoleh nilai precision, recall, akurasi, dan f1-score masing – masing sebesar 94%, 94%, 94%, dan 94%. Berdasarkan metric evaluasi, kinerja metode MobileNetV2 mengungguli Inceptionv3.