Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

Load characteristic analysis of a double-side internal coreless stator axial flux PMG Wirtayasa, Ketut; Irasari, Pudji; Kasim, Muhammad; Widiyanto, Puji; Hikmawan, Muhammad Fathul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 1 (2019)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2867.192 KB) | DOI: 10.14203/j.mev.2019.v10.17-23

Abstract

The main issue of using a permanent magnet in electric machines is the presence of cogging torque. Several methods have been introduced to eliminate it, one of which is by employing a coreless stator. In this paper, the load characteristic analysis of the double-side internal coreless stator axial flux permanent magnet generator with the specification of 1 kW, 220 V, 50 Hz, 300 rpm and 1 phase is discussed. The purpose is to learn the effect of the load to the generator performance, particularly the output power, efficiency and voltage regulation. The design and analysis are conducted analytically and numerically with two types of simulated loads, pure resistive and resistive-inductive in series. Each type of load provides power factor 1 and 0.85 respectively. The simulation results show that when loaded with resistive load, the generator gives a better performance at the output power (1,241 W) and efficiency (91 %), whereas a better voltage regulator (5.86 %) is achieved when it is loaded with impedance. Since the difference in the value of each parameter being compared is relatively small, it can be concluded that the generator represents good performance in both loads.
Design of switched reluctance motor as actuator in an end-effector-based wrist rehabilitation robot Azhari, Budi; Hikmawan, Muhammad Fathul; Nugraha, Aditya Sukma; Yazid, Edwar; Pakha, Aji Nasirohman; Baskoro, Catur Hilman Adritya Haryo Bhakti; Rahmat, Rahmat; Ramadiansyah, Mohamad Luthfi
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 2 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.1109

Abstract

The non-communicable diseases have become the top cause of global mortality. One of them is stroke, which also become the first cause of disability worldwide. To help rehabilitate the upper extremities function of stroke survivors, a rehabilitation aid robot is developed, also to bridge the gap between patient and medical staff numbers. An end-effector-based rehabilitation robot is one proposed device. In this case, a switched reluctance motor (SRM) can be utilized as the actuator for its simplicity, robustness, high low-speed torque, and low cost. Thus, this paper proposes a design of SRM to be used as the actuator of an end-effector-based wrist rehabilitation robot. The proposed design is made based on the required torque. To extract the outputs, calculation and simulation using finite element magnetic FEMM 4.2 are conducted. The results show that the SRM produces enough torque, according to references. Moreover, rotor tooth width reduction is not preferred, as it increases the negative torque even though it raises the saliency ratio and cuts the mass of the motor.