This Author published in this journals
All Journal JURNAL ELEKTRO
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deep Learning-Based Brain Tumor Classification Using Convolutional Neural Network Sasita, Naumi; Futri Zalzabilah Ray; M.Fauzanil Wildan A.R.; Tantowi Hutagalung; Rokhmat Febrianto
Jurnal Elektro Vol 18 No 1 (2025): Jurnal Elektro: April 2025
Publisher : Prodi Teknik Elektro, Fakultas Teknik Unika Atma Jaya Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25170/jurnalelektro.v18i1.6658

Abstract

An essential noninvasive medical diagnostic technique is magnetic resonance imaging (MRI), which is particularly useful for identifying brain cancers. While earlier algorithms proved effective on smaller MRI datasets, their performance suffered on bigger datasets. This study addresses the need for a swift and reliable brain tumor classification system capable of sustaining optimal performance across comprehensive MRI datasets. The convolutional neural network is implemented using the Keras library, incorporating the ResNet50 architecture as a pre-trained model. The ResNet50 model is fine-tuned for the specific brain tumor classification task, with a Global Average Pooling layer, dropout, and a final dense layer with softmax activation. Data augmentation techniques are employed to enhance the model’s robustness, including rotation, width and height shifts, and horizontal flips. The training process involves optimizing the model using the Adam optimizer with a learning rate of 0.0001. Early stopping, learning rate reduction on plateau, and model checkpointing are implemented as callbacks to ensure efficient training and prevent overfitting. The proposed model achieves a remarkable accuracy of 99.28 percent after 15 epochs. The classification task involves distinguishing among four classes: glioma, meningioma, pituitary, and no tumor.