Zain, Fadli Fauzi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

EFFECTIVENESS OF SVM METHOD BY NAïVE BAYES WEIGHTING IN MOVIE REVIEW CLASSIFICATION Zain, Fadli Fauzi; Sibaroni, Yuliant
Khazanah Informatika Vol. 5 No. 2 December 2019
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/khif.v5i2.7770

Abstract

Classification of movie review belongs to the realm of text classification, especially in the field of sentiment analysis. One familiar text classification method used is support vector maching (SVM) and Naïve Bayes. Both of these methods are known to have good performance in handling text classification separately. Combining these two methods is expected to improve the performance of classifier compared to working separately. This paper reports the effort to classify movie reviews using the combined method of Naïve Bayes and SVM with Naïve Bayes as weights. This combined method is commonly called NBSVM. The results showed the best accuracy is obtained if the classification is done by the NBSVM method, which is equal to 88.8% with the combined features of unigram and bigram and using pre-processing in the form of data cleansing only.