Claim Missing Document
Check
Articles

Found 2 Documents
Search

EMOTION CLASSIFICATION BY EEG SIGNAL GENERATED BY BRAIN USING DISCRETE WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK BACKPROPAGATION WITH CLASSICAL MUSIC STIMULUS Dimas, Aditya
Jurnal Internasional Teknik, Teknologi dan Ilmu Pengetahuan Alam Vol 1 No 2 (2019): International Journal of Engineering, Technology and Natural Sciences
Publisher : University Of Technology Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (230.861 KB) | DOI: 10.051018/ijets.v1i2.43

Abstract

People feel different emotions when listening to music on certain levels. Such feelings occur because the music stimuli causing reduced or increased brain activity and producing brainwave with specific characteristics. Results of research indicated that classical piano music can influence one?s emotional intelligent. By using Electroenchephalography (EEG) as a brainwave recording instrument, we can assess the effect of stimulation on the emotions generated through brain activity. This study aimed at developing a method that defines the effect of sound to brain activity using an EEG signal that can be used to identify one's emotion based on classical piano music stimulus reaction. Based on its frequency, this signal was the classified using DWT. To train Artificial Neural Network, some features were taken from the signal. This ANN research was carried out using the process of backpropagation
Power Monitoring System Design on 3 Phase Electric Motor Muchtar, Taufik; Djabir, ST.Nurhayati; Dimas, Aditya
JEAT : Journal of Electrical Automation Technology Vol. 1 No. 1 (2022): JEAT : Journal of Electrical and Automation Technology
Publisher : UPPM Poltek ATI Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (479.977 KB) | DOI: 10.61844/jeat.v1i1.123

Abstract

Penelitian ini bertujuan untuk merancang dan membuat sistem monitoring daya pada motor listrik. Penelitian ini merupakan penelitian eksperimental yang dilakukan melalui dua tahap yaitu tahap pembuatan serta tahap pengujian. Penelitian dan pernacangan alat dilakukan di laboratorium Politeknik ATI Makassari. Sistem monitoring data motor listrik ini terbaca otomatis pada layer LCD. Sistem ini terdiri dari sensor Arus PZEM-004T, Wemos D1 Mini dan LCD, RTC DS1307 untuk sinkronisasi waktu pada LCD. . Sensor arus PZEM-004T mengukur besaran listrik seperti arus, tegangan dan daya pada motor listrik. Selanjutnya Wemos D1 mini mengolah data hasil pembacaan tersebut serta mengirim dan dan menampilkan data tersebut pada layer LCD.. Sensor PZEM-004T berfungsi untuk mengukur besaran listrik pada motor listrik. Hasil monitoring motor listrik 3 fasa diperoleh persentase kesalahan eror saat pengukuran arus sebesar 10,14%. Pada pengukuran Tegangan diperoleh persentase kesalahan eror sebesar 1,09%. Dan pada pengukuran daya di dapatkan persentase kesalahan eror sebesar 9,58%