Al-Ansari, Nadhir
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Behavior of Reinforced Concrete Beams with effect of Stiffened Plates Al Amli, Ali Sabah; Shakir, Laith; Abdulredha, Ali; Al-Ansari, Nadhir
Civil Engineering Journal Vol 5, No 12 (2019): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091433

Abstract

This study presents experimental work including an investigation conducted on five simply supported reinforced concrete beams under pure torsion. First beam without strengthening as a control beam. The other four beams were strengthened externally by bolted thin steel plates. For this test the load was applied gradually. The torque was increased gradually up to failure of the beam.  The variables were the thickness and height of the steel plate that was externally connected to both sides of the rectangular reinforced concrete beam. The test results for the beams discussed are based on torque-twist behavior. The experimental results show that the attachment of thin steel plates by mechanical means to beams provides a considerable improvement in the torsional behavior of the reinforced concrete beams. Comparable to the reference beam, the maximum increase in the cracking and the ultimate torque of the composite beam was recorded for the reinforced concrete beam that strengthen by steel plate of (150) mm height, (2mm) thickness and (50mm) spacing between shear connectors (B1). The results revealed that the cracking torque, ultimate torque, global stiffness of beam and beam ductility for all composite beams increase with the increase of the plate's thickness, plate's height.
Study of Biomass Bottom Ash Efficiency as Phosphate Sorbent Material Alzeyadi, Ali; Al-Ansari, Nadhir; Laue, Jan; Alattabi, Ali
Civil Engineering Journal Vol 5, No 11 (2019): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091419

Abstract

Excessive richness of nutrients in water bodies such as rivers, lakes and ponds lead into deterioration of aquatic life as a results of dense growth of algae. Phosphate is one of the main nutrients that should be controlled to prevent this serious issue. Utilizing low cost material as a phosphate sorbent is offering a treatment method characterized as a sustainable solution. In this study the efficiency of biomass bottom ash BBA as phosphate sorbent material from aqueous solution is investigated. Batch experiments were undertaken, in which a particular mass of BBA was brought into contact with the phosphate solution. The experiments studied the influence of pH (different phosphate solutions were prepared with pH range 4 to 8), temperature (adsorption capacity measured at the temperature range of 10 to 30 °C), and contact time. In addition, the adsorption isotherm models were also applied to better understand the mechanism of phosphate sorption by BBA. The results revealed that the bonding between the cations (BBA surface) and anions (phosphate solution) is significantly affected by the pH of the solution. BBA presents an excellent phosphate sorption, especially, at low pH value and temperature around 20 oC. The method of this research can be adopted as a followed strategy for examination the capability of selected material for phosphorus removal from wastewater.
Study Numerical Simulation of Stress-Strain Behavior of Reinforced Concrete Bar in Soil using Theoretical Models Al Amli, Ali Sabah; Al-Ansari, Nadhir; Laue, Jan
Civil Engineering Journal Vol 5, No 11 (2019): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091416

Abstract

Nonlinear analysis for reinforced concrete members (R.C.) with two types of bars also with unsaturated and saturated soils was used to represent the models. To control the corrosion in the steel bar that used in R.C. member and decrease the cost, the geogrid with steel bar reinforcement are taken in this study to determine the effect of load-deflection and stress-strain relationships. The finite element method is used to model the R.C. member, bars and soil. A three-dimensional finite element model by ABAQUS version 6.9 software program is used to predict the load versus deflection and stress versus strain response with soil. The results for the model in this study are compared with the experimental results from other research, and the results are very good. Therefore, it was concluded that the models developed in this study can accurately capture the behavior and predict the load-carrying capacity of such R.C. members with soil and the maximum stresses with strains. The results show plastic strain values in the R.C. member with saturated soil are larger than their values in unsaturated soil about (54%, 58%, and 55% and 52%) when the geogrid ratios are (without geogrid, 60%, 40% and 20%) respectively, with the same values of stresses.