Claim Missing Document
Check
Articles

Found 2 Documents
Search

A new optimal strategy for energy minimization in wireless sensor networks Ouchitachen, Hicham; Darif, Anouar; Er-rouidi, Mohamed; Johri, Mustapha
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp2265-2274

Abstract

In recent years, evolutionary and metaheuristic algorithms have emerged as crucial tools for optimization in the field of artificial intelligence. These algorithms have the potential to revolutionize various aspects of our lives by leveraging the multidisciplinary nature of wireless sensor networks (WSNs). This study aims to introduce genetic and simulated annealing algorithms as effective solutions for enhancing WSN performance. Our contribution entails two main phases. Firstly, we establish mathematical models and formulate objectives as a nonlinear constrained optimization problem. Secondly, we develop two algorithmic solutions to address the formulated optimization problem. The obtained results from multiple simulations demonstrate the positive impact of the proposed strategies on improving network performance in terms of energy consumption.
Customized dataset-based machine learning approach for black hole attack detection in mobile ad hoc networks Moudni, Houda; Er-rouidi, Mohamed; Lmkaiti, Mansour; Mouncif, Hicham
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2138-2149

Abstract

This article explores the application of machine learning (ML) algorithms to classify the black hole attack in mobile ad hoc networks (MANETs). Black hole attacks threaten MANETs by disrupting communication and data transmission. The primary goal of this study is to develop an intrusion detection system (IDS) to detect and classify this attack. The research process involves feature selection, the creation of a custom dataset tailored to the characteristics of black hole attacks, and the evaluation of four machine learning models: random forest (RF), logistic regression (LR), k-nearest neighbors (k-NN), and decision tree (DT). The evaluation of these models demonstrates promising results, with significant improvements in accuracy, precision, F1-score, and recall metrics. The findings underscore the potential of machine learning in enhancing the security of MANETs by providing an effective means of attack classification.