Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing feature selection with a novel hybrid approach incorporating genetic algorithms and swarm intelligence techniques Benghazouani, Salsabila; Nouh, Said; Zakrani, Abdelali; Haloum, Ihsane; Jebbar, Mostafa
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp944-959

Abstract

Computing advances in data storage are leading to rapid growth in large-scale datasets. Using all features increases temporal/spatial complexity and negatively influences performance. Feature selection is a fundamental stage in data preprocessing, removing redundant and irrelevant features to minimize the number of features and enhance the performance of classification accuracy. Numerous optimization algorithms were employed to handle feature selection (FS) problems, and they outperform conventional FS techniques. However, there is no metaheuristic FS method that outperforms other optimization algorithms in many datasets. This motivated our study to incorporate the advantages of various optimization techniques to obtain a powerful technique that outperforms other methods in many datasets from different domains. In this article, a novel combined method GASI is developed using swarm intelligence (SI) based feature selection techniques and genetic algorithms (GA) that uses a multi-objective fitness function to seek the optimal subset of features. To assess the performance of the proposed approach, seven datasets have been collected from the UCI repository and exploited to test the newly established feature selection technique. The experimental results demonstrate that the suggested method GASI outperforms many powerful SI-based feature selection techniques studied. GASI obtains a better average fitness value and improves classification performance.
Enhancing breast cancer diagnosis: a comparative analysis of feature selection techniques Benghazouani, Salsabila; Nouh, Said; Zakrani, Abdelali
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4312-4322

Abstract

Breast cancer is a significant contributor to female mortality, emphasizing the importance of early detection. Predicting breast cancer accurately remains a complex challenge within medical data analysis. Machine learning (ML) algorithms offer valuable assistance in decision-making and diagnosis using medical data. Numerous research studies highlight the effectiveness of ML techniques in improving breast cancer prediction. Feature selection plays a pivotal role in data preprocessing, eliminating irrelevant and redundant features to minimize feature count and improve classification accuracy. This study focuses on optimizing breast cancer diagnostics through feature selection methods, specifically genetic algorithms (GA) and particle swarm optimization (PSO). The research involves a comparative analysis of these methods and the application of a diverse set of ML classification techniques, including logistic regression (LR), support vector machine (SVM), decision tree (DT), and ensemble methods like random forest (RF), AdaBoost, and gradient boosting (GB), using a breast cancer dataset. The models' performance is subsequently evaluated using various performance metrics. The experimental findings illustrate that PSO achieved the highest average accuracy, reaching 99.6% when applied to AdaBoost, while GA attained an accuracy rate of 99.5% when employed with both AdaBoost and RF.