Claim Missing Document
Check
Articles

Found 2 Documents
Search

PID Controller for A Bearing Angle Control in Self-Driving Vehicles Khather, Salam Ibrahim; Ibrahim, Muhammed A.; Ibrahim, Mustafa Hussein
Journal of Robotics and Control (JRC) Vol 5, No 3 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i3.21612

Abstract

The enhancement of self-driving vehicles has the potential to disrupt traditional transportation systems, Utilizing progress in secure and intelligent mobility. However, control of movement in self-driving vehicles is still difficult to carry out driving duties in a constantly changing road environment. The regulation of bearing angle is an essential component in self-driving vehicles navigation systems, facilitating the secure and efficient operation of vehicles across a range of environments, including urban streets, highways, and off-road terrain. It employs algorithms and sensor fusion to perceive surroundings, compute trajectories, and execute precise steering commands. The bearing angle represents the angle between the vehicle's current and desired directions. By consistently monitoring this angle and implementing appropriate steering inputs, the self-driving vehicle can accurately stay on track and proactively adapt to obstacles or adhere to a designated route. In this context, we explore the advancements in bearing angle control methods for self-driving vehicles. By conducting simulations of a simplified block diagram for a self-guiding vehicle's bearing angle control techniques, the efficacy of the steering system of self-driving cars has been briefly examined. We provide various methods of control, which are considered approaches for controlling the angle of bearings through lag lead compensation and PID auto-tuned controllers. The results show that the auto-tuned PID controller outperforms all other controllers in terms of transient and steady-state responses.
Design of a discrete PID controller based on identification data for a simscape buck boost converter model Almaged, Mohammed; Khather, Salam Ibrahim; Abdulla, Abdulla I.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (533.842 KB) | DOI: 10.11591/ijpeds.v10.i4.pp1797-1805

Abstract

This work shows the design and tuning procedure of a discrete PID controller for regulating buck boost converter circuits. The buck boost converter model is implemented using Simscape Matlab library without having to derive a complex mathematical model. A new tuning process of digital PID controllers based on identification data has been proposed. Simulation results are introduced to examine the potentials of the designed controller in power electronic applications and validate the capability and stability of the controller under supply and load perturbations. Despite controller linearity, the new approach has proved to be successful even with highly nonlinear systems. The proposed controller has succeeded in rejecting all the disturbances effectively and maintaining a constant output voltage from the regulator.