Gupta, Gaurav
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Development of IoT based intelligent irrigation system using particle swarm optimization and XGBoost techniques Santosh, D. Teja; Anuradha, Nandula; Kolukuluri, Madhavi; Gupta, Gaurav; Pathak, Mrunal Kishor; Krishnan, V. Gokula; Raghuvanshi, Abhishek
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6332

Abstract

A crop needs regular watering throughout its life to grow well. Irrigation improves food growth. Machines irrigate plants. The dry Sahel, which gets a lot of rain during the summer season but is dry in winter, needs irrigation. When it doesn't rain enough, crops need watering. By constantly monitoring soil moisture, humidity, temperature, and pH, precision agriculture reduces water use and increases crop output. Precision gardening uses less water. In many wealthy nations, efficient farming requires the internet of things (IoT). Particle swarm optimization (PSO) and XGBoost are used in this IoT-based intelligent watering system. Humidity and moisture sensors gather soil data at grass roots. Sensors constantly gather this data. These data are useless for smart watering. PSOselects smart watering data. This reduces central cloud info storage. Then, machine learning methods are trained using soil humidity, moisture, crop, and weather data. These programs can calculate a crop's water requirements. IoT devices control irrigation system water flow and results in saving fresh water. XGBoost algorithm is saving water from 23% to 27% for different crops.
Chaotic grey wolf optimization based framework for efficient task scheduling in cloud fog computing J., Shreyas; S. Kharat, Reena; N. Phursule, Rajesh; Bhujanga Rao Madamanchi, Venkata; S. Rakshe, Dhananjay; Gupta, Gaurav; Jawarneh, Malik; F., Sammy; Raghuvanshi, Abhishek
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8098

Abstract

Task scheduling is an essential component of any cloud computing architecture that seeks to cater to the requirements of its users in the most effective manner possible. It is essential in the process of assigning resources to new jobs while simultaneously optimising performance. Effective job scheduling is the only method by which it is possible to achieve the essential goals of any cloud computing architecture, including high performance, high profit, high utilisation, scalability, provision efficiency, and economy. This article gives a framework based on chaotic grey wolf optimization (CGWO) for efficiently scheduling tasks in cloud fog computing. Task scheduling is done with CGWO, ant colony optimization (ACO), and min-max algorithms. CloudSim is used to implement task scheduling algorithms. Makespan time required by CGWO algorithm for 500 tasks is 73.27 seconds. CGWO is taking minimum resources to accomplish the tasks in comparison to ACO and min-max methods. Response time of CGWO is also 3745.2 seconds. CGWO is performing better in terms of Makespan time, response time and resource utilization among the methods used in the experimental work.
Enhanced deep auto encoder technique for brain tumor classification and detection Badashah, Syed Jahangir; Moholkar, Kavita; Bangare, Sunil L.; Gupta, Gaurav; T., Devi; Francis, Sammy; Hariram, Venkatesan; Omarov, Batyrkhan; Rane, Kantilal Pitambar; Raghuvanshi, Abhishek
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp2031-2040

Abstract

A brain tumor can develop due to uncontrolled proliferation of aberrant cells in brain tissue. Malignant tumor can influence the nearby brain tissues, potentially resulting in the person's death. Early diagnosis of a brain tumor is crucial for ensuring the survival of patients. This article introduces an improved method using a deep auto encoder for the classification and detection of brain tumor. Magnetic resonance imaging (MRI) images are obtained from the BraTS data sets. The images undergo preprocessing using an adaptive Wiener filter. Image preprocessing is essential for eliminating noise from the input MRI pictures, hence enhancing the accuracy of MRI image classification. The fuzzy C-means technique is used to accomplish image segmentation. The classification model comprises deep auto encoder, convolution neural network (CNN), and K-nearest neighbor techniques. The classification model is developed and evaluated using MRI image slices from the BraTS dataset. Accuracy of deep auto encoder is 98.81%. Accuracy of CNN is 95.50 and accuracy of K-nearest neighbor (KNN) technique is 91.30%.
CLAHE-AlexNet optimized deep learning model for accurate detection of diabetic retinopathy G., Swetha; Gupta, Gaurav; Rane, Kantilal Pitambar; Ghag, Omkar M.; Korde, Sachin K.; Lalar, Sachin; Omarov, Batyrkhan; Raghuvanshi, Abhishek
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.7854

Abstract

Diabetic retinopathy (DR) is a disease that affects the blood vessels that are located in the retina. Loss of vision due to diabetes is a common consequence of the illness and a key factor in the progression of vision loss and blindness. Both ophthalmology and diabetes research have become more dependent on computer vision and image processing techniques in recent years. Fundus photography, also known as a fundus image, is a method that may be used to capture an image of the back of a person's eye. This article presents optimized deep learning model for diagnostic marking in retinal fundus images towards accurate detection of retinopathy. For experimental work, 500 images were selected from available open source Kaggle data set. 400 images were used to train deep learning model and remaining 100 images were used to validate the model. Images were enhanced using the contrast limited adaptive histogram equalization (CLAHE) algorithm. Pre trained convolutional neural network (CNN) models-AlexNet, VGG16, GoogleNet, and ResNet are used for classification and prediction of images. Accuracy, specificity, precision and F1-score of AlexNet is better than VGG16, ResNet-50, and GoogleNet. Sensitivity of ResNet-50 is higher than other pre trained CNN models.