Claim Missing Document
Check
Articles

Found 2 Documents
Search

Detection of single line to ground fault and self-extinguishing by using a variable and a fixedable inductance in distribution grid in power Jabbar, Feryal Ibrahim; Soomro, Dur Muhammad; Abdullah, Mohd Noor bin; Radzi, Nur Hanis binti Mohammad; Baloch, Mazhar Hussain; Rahmoon, Asif Ahmed; Fakhruldeen, Hassan Falah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i4.pp2044-2051

Abstract

This paper tackled the method for determining the number of Peterson coil which is can compensate with the capacitance because it is important in determining the state of parallel resonance, which in turn control the ground fault current and make the approximate value of the current equal to the current in the sound phases. In this way, we can protect the electrical devices and equipment from being damaged by residual current resulting from the arc due to ground fault, which increases the temperature of conductors which are to a breakdown of insulators and damaging them. Ground fault current equals three times the actual current, and its effect depends on two types of variables which are the first: the number of Peterson coils (which specify the inductance value and compensated) and second: the period time of extinguishing electric are in the ground fault. we obtain, by experimental in the lab where it using the servo motor to control the number of Peterson coils which in turn specify the variable and invariable inductance. We have obtained optimal results for the value of ground-fault current, detect the ground fault and treat it without effect of network load and without power cut off for consumer.
Adaptive position control of DC motor for brush-based photovoltaic cleaning system automation Sorfina, Ummi; Islam, Syed Zahurul; Ching, Kok Boon; Soomro, Dur Muhammad; Yahaya, Jabbar Al-Fatta
Bulletin of Electrical Engineering and Informatics Vol 12, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i3.4926

Abstract

In this paper, we have developed an automatic brush-based PV cleaning system to control and synchronize the 3 motors together with a smooth periodic of cleaning while moving it horizontally over the PV surface. The mechanical design involved installing linear guides at the top and bottom of the rail to support the aluminium plate that holds the carrier motors and rotating brush. Two different movements of translational and rotational motion of the motors are managed by an algorithm programmed in Arduino Mega. In investigating the performance of motor parameters and dust removal rate, we conducted an experiment by spreading dry sand over the PV surface. Results showed that the torque of the cleaning brush motor increases with the increase in load. The obtained torque of the carrier motor was found to be 9.167 Nm ( stall torque, 9.8 Nm) with a full load of 18 brushes. The torque is inversely proportional to the speed but directly proportional to power. The required power to move the 2.93 kg of cleaning system was 19.20 W with 3.015 Nm of torque. The system achieved 86.8% of the dust removal rate from the four cycles of cleaning operations.