Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing power quality: An Adaline algorithm for direct resonance current extraction in shunt active power filter Rahman, Nor Farahaida Abdul; Zainuri, Muhammad Ammirrul Atiqi Mohd; Hannoon, Naeem M. S.; Hidayat, Muhamad Nabil; Baharom, Rahimi; Munim, Wan Noraishah Wan Abdul
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i4.pp2470-2479

Abstract

This paper presents an adaptive linear neuron (Adaline) algorithm designed to extract resonance current from the supply current directly. It aims to reduce the computation burden while upholding efficacy in the extraction process. The approach involves establishing the primary power system, evaluating harmonic and resonance current impacts, formulating efficient extraction strategies based on current waveform characteristics, employing the Adaline algorithm for extraction, and constructing a single-phase shunt active power filter (SAPF) to address harmonic currents and parallel resonance effects. Comparative analysis demonstrates the Adaline algorithm’s precision in extracting current amplitudes pre- and post-SAPF implementation. However, observed disparities in extracted resonance current amplitude may stem from the algorithm’s limitations in capturing low-amplitude signals. While a gain adjustment effectively boosts amplitude. However, it introduces considerable ripple and inconsistency, likely linked to parallel resonance effects. Notably, the SAPF exhibits simultaneous harmonic compensation and resonance damping capabilities. Results affirm the SAPF’s effectiveness in reducing harmonic components across all frequencies, including resonance frequency. Furthermore, resonance damping is crucial for further improving SAPF performance and reducing resonance current. This results in significantly improved waveform quality and reduced total harmonic distortion (THD) and individual harmonic distortion (THDi) values of compensated supply current.
Enhancing engineering education in electric drive systems through integrated computer simulation modules Baharom, Rahimi; Hashim, Norazlan; Hannoon, Naeem M. S.; Rahman, Nor Farahaida Abdul
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp45-54

Abstract

The integration of computer simulation modules in electric drive courses plays a pivotal role in modern engineering education by offering students hands-on experience and fostering a deeper understanding of theoretical concepts. This study highlights the significance of enhancing engineering education through an innovative simulation module designed to analyze electric drive systems. The module enables the specification of suitable converters and machines for speed and position control systems while focusing on the steady-state operations of AC and DC drives. Through simulation exercises, students explore converter circuit topologies, control strategies, and the two-quadrant operations of electric machines using fully controlled two-pulse bridge circuits, encompassing motoring and braking modes in the first and fourth quadrants. The proposed module demonstrates its effectiveness in bridging theory and practice, evidenced by significant improvements in students' comprehension of circuit configurations and control algorithms. The approach enhances critical thinking, problem-solving skills, and the ability to relate theoretical knowledge to practical applications. Future research will focus on extending the module's capabilities to incorporate additional quadrants of operation and advanced control strategies. By integrating such tools into the curriculum, educators can better prepare students for the evolving demands of engineering careers.