Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Robotics and Control Systems

A New Hybrid Intelligent Fractional Order Proportional Double Derivative + Integral (FOPDD+I) Controller with ANFIS Simulated on Automatic Voltage Regulator System Mohammed, Abdullah Fadhil; Marhoon, Hamzah M.; Basil, Noorulden; Ma'arif, Alfian
International Journal of Robotics and Control Systems Vol 4, No 2 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i2.1336

Abstract

In the dynamic realm of Automatic Voltage Regulation (AVR), the pursuit of robust transient response, adaptability, and stability drives researchers to explore novel avenues. This study introduces a groundbreaking approach—the Hybrid Intelligent Fractional Order Proportional Derivative2+Integral (FOPDD+I) controller—leveraging the power of the Adaptive Neuro-Fuzzy Inference System (ANFIS). The novelty lies in the comparative analysis of three scenarios: the AVR system without a controller, with a traditional PID controller, and with the proposed FOPDD+I-based ANFIS. By fusing ANFIS with a hybrid controller, we forge a unique path toward optimized AVR performance. The hybrid controller, based on FOPID (Fractional Order Proportional Integral Derivative) principles, synergizes individual integral factors with ANFIS, augmenting them with a doubled derivative factor. The ANFIS design employs a hybrid optimization learning scheme to fine-tune the Fuzzy Inference System (FIS) parameters governing the AVR system. To train the fuzzy inference system, we utilize a Proportional-Integral-Derivative (PID) simulation of the entire AVR system, capturing essential data over approximately seven seconds. Our simulations, conducted in MATLAB/Simulink, reveal impressive performance metrics for the FOPDD+I-ANFIS approach: Rise time: 1.1162 seconds, settling time: 0.5531 seconds, Overshoot: 0%, Steady-state error: 0.00272, These results position our novel approach favorably against existing works, underscoring the transformative potential of intelligent creation in AVR control.
Selection and Evaluation of Robotic Arm based Conveyor Belts (RACBs) Motions: NARMA(L2)-FO(ANFIS)PD-I based Jaya Optimization Algorithm Fadhil Mohammed, Abdullah; Basil, Noorulden; Abdulmaged, Riyam Bassim; Marhoon, Hamzah M.; Ridha, Hussein Mohammed; Ma'arif, Alfian; Suwarno, Iswanto
International Journal of Robotics and Control Systems Vol 4, No 1 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i1.1243

Abstract

Scholars worldwide have shown considerable interest in the industrial sector, mainly due to its abundant resources, which have facilitated the adoption of conveyor belt technologies like Robotic Arm-Based Conveyor Belts (RACBs). RACBs rely on four primary movements: (i.e., joint, motor, gear, and sensor), which can have a significant impact on the overall motions and motion estimation. To optimize these operations, an assistive algorithm has been developed to enhance the effectiveness of motion by achieving favorable gains. However, each motion requires specific criteria for Fractional Order Proportional Integral Derivative (FOPID) controller gains, leading to various challenges. These challenges include the existence of multiple evaluation and selection criteria, the significance of these criteria for each motion, the trade-off between criterion performance for each motion, and determining critical values for the criteria. As a result, the evaluation and selection of the Proposed Jaya optimization algorithm for RACB motion control becomes a complex problem. To address these challenges, this study proposes a novel integrated approach for selecting the Jaya optimization algorithm in different RACB motions. The approach incorporates two evaluation methods: the Nonlinear Autoregressive Moving Average with exogenous inputs (NARMA-L2) controller for Neural Network (NN) weighting of the criteria, and the Adaptive Neuro-Fuzzy Inference System (ANFIS) for selecting the Jaya optimization algorithm. The approach consists of three main phases: RACB-based NARMA-L2 Controller Identification and Pre-processing, Development of NARMA-L2 controller-based NARMA(L2)-FO(ANFIS)PD-I, and Evaluation of FOPID criteria based on JOA. The proposed approach is evaluated based on NARMA(L2)-FO(ANFIS)PD-I that given 0.4074, 0.3156, 0.3724, 0.1898 and 0.2135 for K_p_joint, K_i_motor, K_d_sensor, λ_gear, and µ_N respectively, which verifies the soundness of the proposed methodology.
Systematic Review of Unmanned Aerial Vehicles Control: Challenges, Solutions, and Meta-Heuristic Optimization Basil, Noorulden; Sabbar, Bayan Mahdi; Marhoon, Hamzah M.; Mohammed, Abdullah Fadhil; Ma'arif, Alfian
International Journal of Robotics and Control Systems Vol 4, No 4 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i4.1596

Abstract

Unmanned Aerial Vehicles (UAVs) are powerful tools with vast potential, yet they face significant challenges. One of the primary issues is flight endurance, limited by current battery technology. Researchers are exploring alternative power sources, including hybrid systems and internal combustion engines, and considering docking stations for battery exchange or recharging. Beyond endurance, UAVs must address safety, efficient path planning, payload capacity balancing, and flight autonomy. The complexity increases when considering swarming behaviour, collision avoidance, and communication protocols. Despite these challenges, research continues to unlock UAVs’ potential, with path planning optimization significantly advanced by meta-heuristic algorithms like the Cuckoo Optimization Algorithm (COA). Whereas, meta-heuristic algorithms can be defined as system-level strategies that are used to seek suboptimal solutions to optimization problems. It uses heuristic approaches together with the exploration/exploitation scheme in order to effectively employ within large solution spaces. However, dynamic environments still present difficulties. UAVs have evolved beyond recreational use, becoming essential in industries like agriculture, delivery services, surveillance, and disaster relief. By resolving issues related to autonomy, battery longevity, and security, the benefits of UAV technology can be fully optimized. This systematic review emphasizes the importance of continuous innovation in UAV research to overcome these challenges.
A Comparative Study of Fuzzy Logic Controller, ANFIS, and HHOPSO Algorithms in the LEACH Protocol for Optimising Energy Efficiency and Network Longevity in Wireless Sensor Networks Shafeeq Bakr, Zaid; Hassan, Reem Falah; Al-Tahir, Sarah O.; Basil, Noorulden; Ma'arif, Alfian; Marhoon, Hamzah M.
International Journal of Robotics and Control Systems Vol 5, No 3 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i3.1918

Abstract

This research provides a thorough analysis of the algorithms used in the Low Energy Adaptive Clustering Hierarchy (LEACH) protocol for Wireless Sensor Networks (WSNs) to apply Fuzzy Logic, Adaptive Neuro-Fuzzy Inference System (ANFIS), and Harris Hawks Optimisation-Particle Swarm Optimisation (HHOPSO). The primary aim of this paper is to compare and measure these methods by how they save energy, prolong the network’s lifetime and choose the best cluster heads. We look at major indicators such as First Node Death (FND) and the number of rounds when 80% and 50% of nodes are still working, by testing 100 simulated network nodes. The HHOPSO is shown to do a better job at keeping node batteries alive and, at length the network in operation than both Fuzzy Logic and ANFIS. Moreover, ANFIS is more effective than Fuzzy Logic, because it can learn better from data. It is found that HHOPSO helps LEACH become more efficient and effective, contributing new information about how to manage energy and network performance in Wireless Sensor Networks. The document shows the effectiveness of advanced algorithms in keeping sensor networks running longer and offers ideas on how to evaluate them in various network settings.