The Pico Hydro Power Plant (PLTPH) practical equipment in the campus laboratory is used as a learning tool for simple hydro power systems. The learning activities generally include analyzing turbine performance, turbine/generator efficiency, and turbine design. However, structural and material analysis of the frame that supports the PLTPH system is rarely conducted. The design and material structure are crucial for ensuring the robustness, stability, and response of the frame in supporting PLTPH components. In the context of extending equipment lifespan and achieving more precise design, this study aims to analyze the frame design of the PLTPH practical equipment. A quantitative method was used based on the AISI/ASTM material datasheet. The technical specifications of PLTPH components served as a reference in designing the frame, and the datasheet was used to determine the mechanical properties of the material. Low-head water energy resources are rarely utilized due to limited access to advanced technology, thus technological development is needed to convert water potential energy into electricity. The screw turbine frame design is expected to support a micro-hydro power system using a screw turbine as a generator driver with a cost-effective configuration. The screw turbine converts water potential energy into kinetic energy through its blades. The literature review was conducted by searching, reading, and examining relevant sources such as journals and technical papers. Manufacturing and testing were carried out directly on the screw turbine frame. The design results show that the frame is made from 3 mm thick angle iron with a length of 195 cm, a height of 100 cm, and a width of 40 cm. The frame has a static force of 49 N, a stress value of 6.28205 N/mm², and a strain of 0.03141025 mm. Abstrak: Alat praktikum Pembangkit Listrik Tenaga Piko Hidro (PLTPH) di laboratorium kampus digunakan sebagai pembelajaran sistem sederhana dari hydro power. Pembelajaran yang dilakukan umumnya meliputi menganalisis kinerja turbin, efisiensi turbin/generator, dan perancangan turbin. Pendekatan analisis struktur desain dan material pada sistem rangka yang menopang PLTPH jarang dilakukan. Struktur desain dan material merupakan bagian penting dari kekokohan, stabilitas, serta respons rangka dalam menahan beban komponen PLTPH. Dalam konteks memperpanjang umur kinerja alat dan perancangan yang lebih presisi, penelitian ini bertujuan untuk menganalisis desain rangka alat praktikum PLTPH. Pada penelitian ini digunakan metode kuantitatif berdasarkan datasheet material AISI/ASTM. Spesifikasi teknis komponen PLTPH dijadikan acuan dalam merancang desain rangka. Datasheet digunakan untuk mengetahui sifat mekanik material. Sumber daya potensial energi air dengan head rendah atau ketinggian yang sangat rendah yang jumlahnya sedikit digunakan sebagai sumber energi, dikarenakan aksesibilitas teknologi canggih untuk memanfaatkannya masih terbatas. Dengan demikian, diperlukan potensi kemajuan teknologi untuk mengelola energi air menjadi energi listrik. Desain rangka turbin ulir diharapkan dapat menyediakan pembangkit listrik mikrohidro yang menggunakan turbin ulir sebagai penggerak generator dengan biaya yang lebih hemat. Turbin ulir memanfaatkan energi potensial air yang diubah oleh bilah menjadi energi kinetik melalui sudu. Penelusuran pustaka dilakukan dengan mencari, membaca, dan memahami sumber-sumber terkait seperti jurnal dan karya tulis. Pembuatan serta pengujian dilakukan secara langsung pada rangka turbin ulir. Hasil desain menunjukkan bahwa rangka turbin ulir dibuat dari besi siku tebal 3 mm dengan panjang 195 cm, tinggi 100 cm, dan lebar 40 cm. Rangka memiliki gaya statis 49 N, tegangan 6,28205 N/mm², dan regangan 0,03141025 mm.