Sukamta, Sukamta
Department of Mechanical Engineering Universitas Muhammadiyah Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

SIMULATION OF HIGH VISCOSITY GAS-LIQUID TWO-PHASE FLOW IN A HORIZONTAL MINI PIPE Sukamta, Sukamta
Semesta Teknika Vol 22, No 2 (2019): NOVEMBER 2019
Publisher : Semesta Teknika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Two-phase flow is used in many industries such as nuclear reactors, boilers, condensers, liquefactions of natural gas, etc. Two-phase flow is a flow in a pipe which has two states of fluid such as solid-liquid, liquid-gas, gas-solid. In a two-phase flow, there are three channels, namely vertical, horizontal and inclined channels. In the horizontal channel, the most widely found flow is the flow patterns of stratified flow, bubble flow, plug flow, stratified wavy flow, annular flow, and slug flow. Refer to the previous research above, the flow patterns were mostly obtained by using an experimental study. The advantage of using the simulation is the ability to predict the flow pattern and pressure gradient before doing the experimental study so it can be known earlier if it will have an insecure flow pattern, i.e. slug flow. This research was conducted to find the flow pattern and pressure gradient by using a Computational Fluid Dynamics (CFD) software, the Ansys Fluent 19.0 Student. The model which was used is the Volume of Fluid (VOF) with the fluid of air-water and glycerin (40%-70%). The length of the pipe was 200 mm, the inner diameter was 1.6 mm, and the length of the test section was 100 mm. Liquid superficial speeds (JL) of 0.033 m/s; 0.149 m/s; 0.232 m/s; 0.539 m/s; 0.7 m/s; 2.297 m/s and 4.935 m/s were used, while the air superficial speed (JG) was 9.62 m/s. The result of the simulation showed slug annular and churn flow patterns. Slug annular was formed at JL= 0.033 m/s; 0.149 m/s and 0.232 m/s with the glycerin content of 40% and 50%. Slug annular pattern was formed when the glycerin content was 60% and 70% with JL= 0.539 m/s. Viscosity affects the flow pattern, the higher the glycerin content, the higher the viscosity and the more fluid than air. The higher the JL and glycerin content, the higher the pressure gradient.
KONTUR TEKANAN DAN KECEPATAN ALIRAN FLUIDA PADA POMPA HYDRAULIC-RAM Sukamta, Sukamta; Mahendra S, Binanda Braja; Krisdiyanto, Krisdiyanto; Janalto, Ongky; Priambodo, Wursito Adi
JMPM : Jurnal Material dan Proses Manufaktur Vol 3, No 1 (2019): JUNI 2019
Publisher : JMPM : Jurnal Material dan Proses Manufaktur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jmpm.3138

Abstract

AbstrakKarakteristik aliran fluida sangatlah penting diprediksi agar dapat dilakukan upaya pencegahan dini terhadap kerusakan yang terjadi pada saluran perpipaan. Salah satu metode yang tepat untuk memprediksi karakteristik aliran tersebut adalah Computational Fluid Dynamics (CFD). Metode ini sangat cocok digunakan untuk melakukan analisis sebuah sistem yang rumit dan sulit dipecahkan dengan perhitungan manual. Penelitian ini dilakukan untuk mengetahui fenomena aliran yang terjadi pada pompa Hydram dengan simulasi numerik menggunakan software ANSYS Fluent 19 R2 academic. Simulasi ini dilakukan pada pompa Hydram berdiameter tabung 8 inch dan panjang pesat 7,3 m. Simulasi pada kondisi transien ini dilakukan dengan menggunakan metode layering mesh dinamis. Hasil simulasi menunjukkan karakteristik aliran fluida di dalam pompa Hydram dengan kontur tekanan yang tidak merata tetapi terkonsentrasi pada titik tertentu. Tekanan di area badan pompa lebih tinggi daripada di area tabung, perbedaan tekanan disebabkan oleh gerakan katup dan perbedaan diameter pipa. Kecepatan aliran pada pipa pesat sangat berpengaruh pada tekanan yang dihasilkan, dan hal ini akan mempengaruhi head pompa Hydram juga akan meningkat. AbstractIt is important to predict the characteristics of the fluid flow so that early prevention efforts can be made. An appropriate method for predicting the flow characteristics is Computational Fluid Dynamics (CFD). This method is suitable for analyzing complex systems that are difficult to solve using manual calculations. This research was conducted to determine the flow phenomenon that occurs in Hydram pumps with numerical simulations using ANSYS Fluent 19 R2 academic software. This simulation was carried out on a Hydram pump with a diameter of 8 inches and a pipe length of 7.3 m. Simulations on these transient conditions are carried out using the layering dynamic mesh method. The simulation result in the fluid flow characteristics at Hydram pump with uneven pressure contours but concentrated at a certain point. Pressure in the pump body area is higher than that in the tube area, the pressure difference is caused by the movement of the valve and the difference in pipe diameter. The flow velocity on the pipe is very fast influencing the pressure generated, and this will affect the Hydram pump head will also increase.