Zaidi, Syed Bilal Ahmed
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

INFLUENCE OF NATURAL ZEOLITE AND PARAFFIN WAX ON ADHESION STRENGTH BETWEEN BITUMEN AND AGGREGATE Tausif, Muhammad; Zaidi, Syed Bilal Ahmed; Ahmad, Naveed; Jameel, Muhammad Sohail
Civil Engineering Journal Vol 6, No 4 (2020): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091505

Abstract

Asphalt mixture that is used for the construction of flexible pavements is mainly composed of two constituents i.e. bitumen and aggregate. Sturdy adhesion among bitumen and aggregate is the sign of durability of asphalt pavements. Adhesion is considered as one of the most important factors for sustainable asphalt pavement. This is the motive why its miles utmost important to deeply understand the phenomenon of adhesion considering the effect of alternate in temperature, moisture conditions. In this study softer binder 80/100 was selected that has less adhesion compared to hard pen grades. Limestone aggregates which is commonly used for the construction of asphalt pavements has also been selected. Two types of modifiers (Zeolite and Paraffin Wax) were selected because of the extensive use in asphalt foaming and the polymer modified asphalt mixtures as temperature reducing agent. To investigate the strength of adhesive bond, Bitumen Bond Strength (BBS) was performed at different temperatures, in dry, and wet conditions. To quantify the effect of modifiers on penetration grade and softening point conventional testing is performed. For performance grading, the PG test was performed using Dynamic Shear Rheometer. The comparisons were developed among pull of tensile strength at dry and after 72hrs water conditioning while preserving the temperature at 25 .To check the effect of temperature BBS is performed at 15 . The results illustrate that 2% zeolite shows best results in terms of adhesion and performance grade while Paraffin wax has less adhesion and poor performance grade.
Study the Effect of Substitution Filler on performance of Asphalt Mixture Ullah, Rafi; Hafeez, Imran; Zaidi, Syed Bilal Ahmed; Jamal, Jamal; Haider, Safeer
Civil Engineering Journal Vol 6, No 9 (2020): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091576

Abstract

The major distresses in asphalt pavements are rutting, fatigue, and adhesion loss (moisture susceptibility). In this research study, two substitution fillers (Cement and Lime) were used with two different aggregate quarries (based on minerals composition) to evaluate the relatively most beneficial combination of both fillers as well as an aggregate quarry to enhance the performance life of asphalt pavements, especially in under-developed countries. Four basic tests, (Asphalt Pavement Analyzer, Four Points Bending Beam, Dynamic Modulus, and Rolling Bottle Test) that used for the most desired properties of any asphalt pavement, were utilized to access the performance properties of modified asphalt mixture. Based on all laboratory test results this research study concludes that replacement of aggregate filler with hydrated lime and cement has a beneficial effect on asphalt mix performance and to save investment by using raw material. Substitution filler improves the high-temperature rut performance and intermediate temperature fatigue performance of asphaltic concrete mixture up to 25% to that of the conventional mixture. At the same time, substitution filler has more beneficial to improve 70% adhesion properties to that of the conventional mixture.
Hydrated Lime–Based Coating for Cool Pavement Technologies: Evaluation of Durability and Thermal Performance Khuzamy, Muhammad; Rahman, Taqia; Ahmed, Imtiaz; Zaidi, Syed Bilal Ahmed
Journal of the Civil Engineering Forum Vol. 12 No. 1 (January 2026)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.24124

Abstract

Heat-reflective pavement coatings are commonly employed for road cooling and to mitigate Urban Heat Island (UHI) effects by reflecting solar radiation and reducing surface temperatures. However, their cooling efficiency diminishes over time due to abrasion, soiling, UV exposure, and environmental aging, which degrade the reflective polymer layer. As a cost-effective alternative, hot-rolled hydrated lime (HL) applied to pavement surfaces has emerged, forming a light-coloured mineral layer that enhances reflectivity and potentially reduces pavement temperature. This study investigates hydrated lime (HL) as a mineral-based alternative, applied through hot-rolling to form a reflective surface layer that is compatible with conventional asphalt practices. Its performance was evaluated through laboratory thermal simulations (day–night cycling) and abrasion wear testing and compared with three commercial paint-based HRCs: epoxy resin–TiO₂ and acrylic emulsion–TiO₂. The results show that HL coatings achieved surface temperature reductions of up to 21.89 °C compared to uncoated asphalt, exceeding the best-performing paint-based sample (White-AE, 19.29 °C), suggesting that HL has strong potential as an effective reflective coating. This was achieved with a formulation of fine HL particles (No. 400 mesh) at a higher dosage (200 g/m²). In abrasion resistance tests, HL outperformed paint based HRCs, with lower mass losses (0.6–1.3 g vs. 0.8–1.5 g), which was attributed to stronger adhesion and particle embedment. In addition, post-abrasion tests revealed that HL samples retained better thermal stability, with smaller temperature increases (ΔT: 5.9–6.8 °C) than HRCs (ΔT: 6.3–7.2 °C). Based on these outcomes, HL applied at 200 g/m² using fine particles (No.400 mesh) is recommended as the optimal formulation for maximizing cooling performance and surface durability. Overall, these findings suggest that hot-rolled HL is a durable, low-cost, and effective alternative cooling strategy to popular HRCs for UHI mitigation.