Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANTECEDENTS OF PRIVATE LABEL ATTITUDE AND PREFERENCE OVER NATIONAL BRANDS Singh, Ajay; Gupta, Rahul; Kumar, Amol
International Journal of Supply Chain Management Vol 7, No 4 (2018): International Journal of Supply Chain Management (IJSCM)
Publisher : International Journal of Supply Chain Management

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (567.275 KB)

Abstract

Abstract-Retail is one of the most dynamic and fast paced sectors in India. The Growth of the organized retail sector has led to the growth of the Private label brands in India. Private labels offer advantages to both the consumers and retailers. Retailers make huge margin of profit on private labels in comparison to National brand. Various factors are responsible for framing an attitude towards both the private labels and the National brands. Present study sets out to study customer s attitude and preference pattern with respect to different attributes such as-Demographics, Social factors, psychological factors. The study will ultimately assist the retailers in developing and implementing effective marketing efforts in respect of their brands. Keywords- Smart purchases, Value consciousness, perceived quality, Private label, Consumer attitude
Performance Enhancement of Radial Distribution System via Network Reconfiguration: A Case Study of Urban City in Nepal Pandey, Govinda Prashad; Shrestha, Ashish; Mali, Bijen; Singh, Ajay; Jha, Ajay Kumar
Journal of Renewable Energy, Electrical, and Computer Engineering Vol 1, No 1 (2021): March 2021
Publisher : Institute for Research and Community Service, Universitas Malikussaleh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/jreece.v1i1.3455

Abstract

Increasing unplanned energy demand increase has led to network congestion, increases power losses and poor voltage profile. To decrease these effects of an unmanaged power system, distribution network reconfiguration provides an effective solution. This paper deals with improving the power losses and poor voltage profile of the Phulchowk Distribution and Consumer Services (DCS) via the implementation of an optimum reconfiguration approach. A Genetic Algorithm (GA) is developed for the optimization. Further, it tries to answer to what extent can we improve the distribution system without overhauling the entire network. The developed simulation algorithm is firstly put into work on the IEEE 33 bus system to better its voltage profile and the poor power losses. The effectiveness of the developed system is validated as it reduced the voltage drop by 5.66% and the power loss by 25.96%. With the solution validated, the algorithm is further implemented in the case of Pulchowk DCS. After reconfiguring the system in different individual cases, optimum network reconfiguration is selected that improved the voltage profile by 3.85%, and the active and reactive power losses by 44.29% and 45.54% respectively from the base case scenario.
Performance Enhancement of Radial Distribution System via Network Reconfiguration: A Case Study of Urban City in Nepal Pandey, Govinda Prashad; Shrestha, Ashish; Mali, Bijen; Singh, Ajay; Jha, Ajay Kumar
Journal of Renewable Energy, Electrical, and Computer Engineering Vol. 1 No. 1 (2021): March 2021
Publisher : Institute for Research and Community Service (LPPM), Universitas Malikussaleh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/jreece.v1i1.3455

Abstract

Increasing unplanned energy demand increase has led to network congestion, increases power losses and poor voltage profile. To decrease these effects of an unmanaged power system, distribution network reconfiguration provides an effective solution. This paper deals with improving the power losses and poor voltage profile of the Phulchowk Distribution and Consumer Services (DCS) via the implementation of an optimum reconfiguration approach. A Genetic Algorithm (GA) is developed for the optimization. Further, it tries to answer to what extent can we improve the distribution system without overhauling the entire network. The developed simulation algorithm is firstly put into work on the IEEE 33 bus system to better its voltage profile and the poor power losses. The effectiveness of the developed system is validated as it reduced the voltage drop by 5.66% and the power loss by 25.96%. With the solution validated, the algorithm is further implemented in the case of Pulchowk DCS. After reconfiguring the system in different individual cases, optimum network reconfiguration is selected that improved the voltage profile by 3.85%, and the active and reactive power losses by 44.29% and 45.54% respectively from the base case scenario.