Baskoro, Edy Tri
Institut Teknologi Bandung

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Further results on the total vertex irregularity strength of trees Susanto, Faisal; Simanjuntak, Rinovia; Baskoro, Edy Tri
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 13, No 1 (2025): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2025.13.1.9

Abstract

We investigate the total vertex irregularity strength of trees with specific characteristics. Initially, we categorize trees into three distinct groups: types A, B, and C. Subsequently, we calculate tvs(T) for all type A trees T where the maximum degree is at least three. Additionally, we provide the value of tvs(T) whenever T is a tree of types B or C with maximum degree at least three and large number of exterior vertices. Finally, we propose a conjecture related to tvs(T) where T is a non-path tree of types B or C with few exterior vertices. 
On (super) edge-magic deficiency of some classes of graphs Ngurah, Anak Agung Gede; Simanjuntak, Rinovia; Baskoro, Edy Tri
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 13, No 1 (2025): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2025.13.1.4

Abstract

A graph G of order p and size q is called edge-magic total if there exists a bijection ϕ from V(G)∪E(G) to the set {1, 2, …, p + q} such that ϕ(s)+ϕ(st)+ϕ(t) is a constant for every edge st in E(G). An edge-magic total graph with ϕ(V(G)) = {1, 2, …, p} is called super edge-magic total. Furthermore, the edge-magic deficiency of a graph G is the smallest integer n ≥ 0 such that G ∪ nK1 is edge-magic total. The super edge-magic deficiency of a graph G is either the smallest integer n ≥ 0 such that G ∪ nK1 is super edge-magic total or +∞ if there exists no such integer n. In this paper, we study the (super) edge-magic deficiency of join product graphs and 2-regular graphs.