Abstract: One of the main challenges in digital image processing is limited resolution, which makes it difficult to preserve visual details when images are enlarged. Conventional methods such as Bilinear Interpolation are commonly used for image upscaling; however, these approaches often produce blurred images, lose fine textures, and fail to reconstruct complex visual structures. This study aims to enhance digital image resolution by employing a deep learni based approach using a Low-Light Convolutional Neural Network (LLCNN) built upon a Deep Neural Network (DNN) architecture. The dataset used in this study is the DIV2K dataset, which consists of 1,000 high-resolution images. These images were downsampled using scaling factors of ×2, ×3, and ×4 to generate paired Low Resolution–High Resolution (LR–HR) data for training and evaluation. The proposed LLCNN is designed to extract important features such as edges, textures, and local patterns through multiple convolutional layers, followed by non-linear mapping to reconstruct high-resolution images more accurately. Quantitative performance evaluation was conducted using the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM). Model performance was evaluated quantitatively using the Peak Signal-to-Noise Ratio (PSNR) metric. Experimental results showed that the proposed method improved image quality compared to the bilinear method. These results indicate that the deep learning based approach effectively improves image sharpness and structural fidelity, thereby demonstrating its potential for digital image resolution enhancement. Keywords: deep neural network; image resolution; low-light convolutional neural network; machine learning Abstrak: Permasalahan utama dalam pengolahan citra digital adalah keterbatasan resolusi yang menyebabkan detail visual sulit dipertahankan ketika citra diperbesar. Metode konvensional seperti Bilinear Interpolation masih banyak digunakan, namun sering menghasilkan citra buram, kehilangan tekstur halus, serta tidak mampu merekonstruksi struktur visual yang kompleks. Penelitian ini bertujuan untuk meningkatkan kualitas resolusi citra digital dengan memanfaatkan pendekatan deep learning berbasis Low-Light Convolutional Neural Network (LLCNN) yang dibangun di atas arsitektur Deep Neural Network (DNN). Data yang digunakan dalam penelitian ini berasal dari dataset DIV2K, yang terdiri dari 1000 citra beresolusi tinggi. Citra tersebut diturunkan menjadi resolusi rendah menggunakan faktor downsampling ×2, ×3, dan ×4 untuk membentuk pasangan data Low Resolution–High Resolution (LR–HR) sebagai data pelatihan dan pengujian. LLCNN dirancang untuk mengekstraksi fitur-fitur penting seperti tepi, tekstur, dan pola lokal melalui beberapa lapisan konvolusi, kemudian melakukan pemetaan non-linear guna merekonstruksi citra resolusi tinggi secara lebih presisi. Evaluasi performa model dilakukan secara kuantitatif menggunakan metrik Peak Signal-to-Noise Ratio (PSNR). Hasil eksperimen menunjukkan bahwa metode yang diusulkan mampu meningkatkan kualitas citra dibandingkan metode bilinear. Hasil ini membuktikan bahwa pendekatan berbasis deep learning efektif dalam meningkatkan ketajaman dan kesesuaian struktur citra digital. Kata kunci: deep neural network; low-light convolutional neural network; machine learning; resolusi citra