Claim Missing Document
Check
Articles

Found 3 Documents
Search

Smart Grid communication applications: measurement equipment and networks architecture for data and energy flow Atmaja, Tinton Dwi; Andriani, Dian; Darussalam, Rudi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 2 (2019)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3893.233 KB) | DOI: 10.14203/j.mev.2019.v10.73-84

Abstract

Smart Grid is an advanced two way data and energy flow capable of self-healing, adaptive, resilient, and sustainable with prediction capability of possible fault. This article aimed to disclose Smart Grid communication in a logical way to facilitate the understanding of each component function. The study was focused on the improvement, advantages, common used design, and possible feature of Smart Grid communication components. The results of the study divide the Smart Grid communication application into two main category i.e. measurement equipment and network architecture. Measurement equipment consists of Advance Metering Infrastructure, Phasor Measurement Unit, Intelligent Electronic Devices, and Wide Area Measurement System. The network architecture is divided based on three hierarchies; local area network for 1 to 100 m with 100 kbps data rate, neighbour area network for 100 m to 10 km with 100 Mbps data rate, and wide area network for up to 100 km with 1 Gbps data rate. More information is provided regarding the routing protocol for each network from various available protocols. The final section presents the energy and data flow architecture for Smart Grid implementation based on the measurement equipment and the network suitability. This article is expected to provide a comprehensive guide and comparison surrounding the technologies supporting Smart Grid implementation especially on communication applications.
Particle Swarm Optimization (PSO) based Photovoltaic MPPT Algorithm under the Partial Shading Condition Mukti, Ersalina Werda; Risdiyanto, Agus; Kristi, Ant. Ardath; Darussalam, Rudi
Jurnal Elektronika dan Telekomunikasi Vol 23, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.552

Abstract

Performance of solar photovoltaic (PV) system degrades considerably when the surface of the PV array is covered with shadows indicated by the reduction in the generated power. Partial shading condition causes the PV array to produce multiple peaks in PV’s characteristic curve causing the non-optimal power generation of the conventional maximum power point (MPPT) algorithm. Therefore, we proposed an optimization of PV system through the design of particle swarm optimization (PSO) algorithm in the MPPT in order to enhance the power extraction during shaded conditions. The evaluation of the performance of MPPT were carried out by comparing tracking time, tracking error and efficiency obtained by the PSO along with the two most used algorithms namely perturb and observe (P&O) and incremental conductance (IC). A partial shading generator function was designed to generate shading patterns randomly. The PV system consists of ten PV modules integrated with DC dummy load through DC-DC boost converter was simulated using MATLAB/SIMULINK. Simulation results show that the proposed PSO could obtain the global maximum power point (GMPP) while tracking performance of the P&O and IC MPPT both were stuck on the local maxima. Moreover, the optimization of PSO MPPT gave a promising result that the efficiency of the PV system was improved by around 4.66% on the dynamic shading conditions, while the MPPT’s tracking time is slowed down by 0.0025 s and 0.0105 s when its compared to the P&O and IC MPPT respectively.
Energy analysis of active photovoltaic cooling system using water flow Kristi, Ant. Ardath; Susanto, Erwin; Risdiyanto, Agus; Junaedi, Agus; Darussalam, Rudi; Rachman, Noviadi Arief; Fudholi, Ahmad
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1-14

Abstract

An active water-cooling system is one of several technologies that has been proven to be able to reduce heat losses and increase electrical energy in photovoltaic (PV) module. This research discusses a comparative experimental study of three pump activation controls in cooling of PV module with the aim of evaluating specifically the PV output power, net energy gain, water flow rate, and module temperature reduction. The three pump activation controls being compared are continuously active during the test, active based on setpoint temperature, and active by controlling the pump voltage using pulse width modulation (PWM) control in adjusting water flow rate smoothly. The results show that controlling the pump voltage using PWM in the PV cooling process produces energy of 437.95 Wh, slightly lower than the others and the average module cooling temperature is 35.24 °C, higher of 1-3 °C than the others. Nevertheless, PWM control of cooling pump has resulted the percentage of net energy gain of 9.94%, greater than other controls, and with an average flow rate of 2.17 L/min, more efficient than the others. Thus, this control is quite effective as it can produce higher net PV energy yield and lower water consumption.