Shahrokhinasab, Esmail
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Net Section Fracture Assessment of Welded Rectangular Hollow Structural Sections Abedin, Mohammad; Kiani, Nafiseh; Shahrokhinasab, Esmail; Mokhtari, Sohrab
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091544

Abstract

Rectangular Hollow Sections (RHS) because of their high resistance to tension, as well as compression, are commonly used as a bracing member with slotted gusset plate connections in steel structures. Since in this type of connection only part of the section contributes in transferring the tensile load to the gusset plate, shear lag failure may occur in the connection. The AISC specification decreases the effective section net area by a factor to consider the effect of shear lag for a limited connection configuration. This study investigates the effective parameters on the shear lag phenomenon for rectangular hollow section members connected at corners using a single concentric gusset plate. The results of the numerical analysis show that the connection length and connection eccentricity are the only effective parameters in the shear lag, and the effect of gusset plate thickness is negligible because of the symmetric connection. The ultimate tensile capacity of the suggested connection in this study were compared to the typical RHS connection presented in the AISC and the similar double angle sections connected at both legs. The comparison indicates that tensile performance of the suggested connection in this study because of its lower connection eccentricity is much higher than the typical slotted connection and double angle connections. Therefore, a new equation is suggested based on the finite element analyses to modify the AISC equation for these connections.
Effect of Fiber, Cement, and Aggregate Type on Mechanical Properties of UHPC Shahrokhinasab, Esmail; Looney, Trevor; Floyd, Royce; Garber, David
Civil Engineering Journal Vol 7, No 8 (2021): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091726

Abstract

Ultra-High Performance Concrete (UHPC) is a new class of concrete that differentiates itself from other concrete materials due to its exceptional mechanical properties and durability. It has been used in structural rehabilitation and accelerated bridge construction, structural precast applications, and several other applications in the past decades. The mechanical properties of UHPC include compressive strength greater than 124 MPa (18 ksi) and sustained post cracking tensile strength greater than 5 MPa (0.72 ksi) when combined with steel, synthetic or organic fibers. Proprietary, pre-bagged mixtures are currently available in the market, but can cost about 20 times more than traditional concrete. This high price and the unique mixing procedure required for UHPC has limited its widespread use in the US and has motivated many researchers to develop more economical versions using locally available materials. The objective of this study was to investigate the effect of different proportions of typical UHPC mixture components on the mechanical properties of the mixtures. Particle packing theory was used to determine a few optimal mixture proportions and then modifications were made to investigate the effect. A compressive strength of around 124 MPa (18 ksi) was achieved without using any quartz particles in the mixture design. Doi: 10.28991/cej-2021-03091726 Full Text: PDF