Salami, Adekunlé Akim
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Estimating Weibull Parameters for Wind Energy Applications using Seven Numerical Methods: Case studies of three costal sites in West Africa Guenoukpati, Agbassou; Salami, Adekunlé Akim; Kodjo, Mawugno Koffi; Napo, Kossi
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.217-226

Abstract

In this study, the effectiveness of seven numerical methods is evaluated to determine the shape (K) and scale (C) parameters of Weibull distribution function for the purpose of calculating the wind speed characteristics and wind power density. The selected methods are graphical method (GPM), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPFM), maximum likelihood method (MLM) moment method (MOM) and the proposed. Hybrid method (HM) derived from EPFM and EMJ. The purpose is to identify the most appropriate method for computing the mean wind speed, wind speed standard deviation and wind power density for different costal locations in West Africa. Three costal sites (Lomé, Accra and Cotonou) are selected. The input data was collected, from January 2004 to December 2015 for Lomé site, from January 2009 to December 2015 for Accra site and from January 2009 to December 2012 for Cotonou. The results indicate that the precision of the computed mean wind speed, wind speed standard deviation and wind power density values change when different parameters estimation methods are used. Five of them which are EMJ, EML, EPF, MOM, ML, and HM method present very good accuracy while GPM shows weak ability for all three sites. 
The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters Salami, Adekunlé Akim; Ajavon, Ayité Sénah Akoda; Kodjo, Mawugno Koffi; Ouedraogo, Seydou; Bédja, Koffi-Sa
International Journal of Renewable Energy Development Vol 7, No 2 (2018): July 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.2.139-150

Abstract

In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method (MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class (both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which eventually leads to a reduced processing time.Article History: Received February 16th 2018; Received in revised form May 5th 2018; Accepted May 27th 2018; Available onlineHow to Cite This Article: Salami, A.A., Ajavon, A.S.A., Kodjo, M.K. , Ouedraogo, S. and Bédja, K. (2018) The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. Int. Journal of Renewable Energy Development 7(2), 139-150.https://doi.org/10.14710/ijred.7.2.139-150
Influence of the Random Data Sampling in Estimation of Wind Speed Resource: Case Study Salami, Adekunlé Akim; Ouedraogo, Seydou; Kodjoa, Koffi Mawugno; Ajavona, Ayité Sénah Akoda
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.38511

Abstract

In this study, statistical analysis is performed in order to characterize wind speeds distribution according to different samples randomly drawn from wind speed data collected. The purpose of this study is to assess how random sampling influences the estimation quality of the shape (k) and scale (c) parameters of a Weibull distribution function. Five stations were chosen in West Africa for the study, namely: Accra Kotoka, Cotonou Cadjehoun, Kano Mallam Aminu, Lomé Tokoin and Ouagadougou airport. We used the energy factor method (EPF) to compute shape and scale parameters. Statistical indicators used to assess estimation accuracy are the root mean square error (RMSE) and relative percentage error (RPE). Study results show that good accuracy in Weibull parameters and power density estimation is obtained with sampled wind speed data of 30% for Accra, 20% for Cotonou, 80% for Kano, 20% for Lomé, and 20% for Ouagadougou site. This study showed that for wind potential assessing at a site, wind speed data random sampling is sufficient to calculate wind power density. This is very useful in wind energy exploitation development.