Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Automated Matching Skills to Improve the Accuracy of Job Applicant Selection Using Indonesian National Work Competency Standards Ajhari, Abdul Azzam; Priambodo, Dimas Febriyan; Yulianti, Henny
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2017

Abstract

The high number of cyberattack anomalies and data leaks in Indonesia increases the need for cybersecurity in various companies. Cybersecurity capabilities and skills in Indonesia are divided into three categories based on the Indonesian National Work Competency Standards (SKKNI), namely Security Operation Center (SOC), Cybersecurity test/Penetration testing (Pentest), and Information Security Audit. Although various approaches have been applied in different companies to select job applicants, a new method with automated matching is explored in this study. This method matches the skills possessed by prospective job applicants with the profile of their job task requirements based on the SKKNI Decree of the Minister of Manpower of the Republic of Indonesia using Machine Learning (ML) models. The empirical comparison of results comes from automated matchmaking processed by Multinomial Naive Bayes (MNB) and Decision Tree algorithm models. Before modeling, the data is trained and evaluated for testing. Then to assess the most optimal algorithm between MNB and Decision Tree, a confusion matrix is proposed and used to find the best model. From the evaluation results, both models performed well and were highly accurate during training and test evaluation. The Decision Tree model performs slightly better than the MNB model, but both still provide satisfactory results in classifying data based on the Indonesian National Work Competency Standards (SKKNI) categories. This study offers a solution to minimize the number of potential applicants who are not competent in the three SKKNI cybersecurity job categories due to the mismatch of their abilities and skills.
Aircraft Flight Movement Anomaly Detection using Automatic Dependent Surveillance-Broadcast Ajhari, Abdul Azzam; Negara, I Gede Putra Kusuma
JOIV : International Journal on Informatics Visualization Vol 6, No 4 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.4.948

Abstract

Automatic Dependent Surveillance-Broadcast (ADS-B) is an aircraft backup radar device that transmits aircraft sensor information via radio frequency. This data can be used to detect aircraft changes that occur significantly or abnormally (anomaly). Anomaly detection in this study aims to reduce and prevent flight accidents by analyzing abnormal data on aircraft flights using the Deep Learning (DL) model. Bidirectional LSTM (Bi-LSTM) and Bidirectional GRU (Bi-GRU) models are proposed as DL models which are implemented on ADS-B data using data mining methods. The data is generated from the ADS-B device that records the plane crash incident and is stored on the Flightradar24 community server. Data containing sensor changes from anomalous aircraft movements are studied for predictability on other flight data. The class breakdown is divided into two, anomaly and normal, based on information on the time span of anomaly occurrences in the accident investigation report of each aircraft using the sliding window technique in the data mining methodology. In evaluation, the confusion matrix measurement method is used to predict predictive analysis of the tested data. The results of the model evaluation performance show that the Bi-LSTM proposed in this study has the best accuracy of 99.44% and the f1-score of 99.51% is slightly superior to the Bi-GRU model. The model in this study can be applied in the ADS-B device to detect aircraft movement anomalies and as material for reviewing technicians in periodic maintenance and measuring the accuracy of the ADS-B device used as a backup radar.