Salinity intrusion in coastal agricultural areas has become a major constraint to rice production in Indonesia, driven by climate change, sea-level rise, and unsustainable land management practices. High soil salinity adversely affects rice growth, yield stability, and food security, particularly in coastal regions that depend heavily on rice cultivation. Conventional breeding approaches for developing salinity-tolerant rice varieties are often time-consuming and limited by genetic complexity. Advances in genome editing technologies, particularly CRISPR/Cas9, offer a precise and efficient alternative for accelerating crop improvement. The objective of this study is to develop salinity-tolerant rice varieties suitable for Indonesian coastal agriculture through CRISPR/Cas9-mediated genetic engineering targeting key genes associated with salt stress tolerance. This research employed an experimental laboratory-based design combined with controlled greenhouse evaluation. Specific salinity-responsive genes were identified and edited using the CRISPR/Cas9 system. Transgenic rice lines were generated and screened for successful gene edits using molecular analysis techniques. Edited lines were subsequently evaluated under saline and non-saline conditions to assess physiological responses, growth performance, and yield-related traits. The results demonstrate that CRISPR/Cas9-edited rice lines exhibited enhanced tolerance to saline stress, indicated by improved germination rates, higher chlorophyll content, better ion homeostasis, and increased biomass compared to non-edited controls. Several edited lines maintained stable growth and yield under moderate to high salinity levels, confirming the effectiveness of targeted gene modification. In conclusion, CRISPR/Cas9-mediated genetic engineering shows strong potential for developing salinity-tolerant rice varieties tailored to Indonesian coastal environments. This approach provides a rapid and precise strategy to enhance rice resilience, support sustainable coastal agriculture, and strengthen national food security under changing climatic conditions.