Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis of Mobile Banking Acceptance in Indonesia using Extended TAM (Technology Acceptance Model) Andhika, Imam; Pratama, Ahmad R; Pratama, Yogi
Jurnal Teknologi Informasi dan Pendidikan Vol. 16 No. 2 (2023): Jurnal Teknologi Informasi dan Pendidikan
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jtip.v16i2.626

Abstract

The use of Communication and Information Technology which is developed through the years is one of the key of organization’s success in business rivalry through pandemic era nowadays. In line with the development of technology and information, bank authorities also offer the facility of banking through mobile banking (m-banking) application that can be accessed by using smartphone. This research aims to analyze factors that can influence the acceptance of m-banking application in Indonesia. The data was gathered through survey of 412 m-banking users in Indonesia and it was analyzed by using Structural Equation Modeling (SEM) with Extended Technology Acceptance Model (TAM). The findings of the research showed positive attitudes, perceived usefulness and perceived ease of use felt by the m-banking users and become the main reasons in adopting this technology besides social influence and perceived risk of m-banking technology. Meanwhile, the fear of using technology in using m-banking technology has a potential to obstruct the technology adoption. The result of this research can help the bankers and stakeholder in formalizing strategical steps in improving the adaptation of m-banking technology and application, especially in Indonesia.
Model Klasifikasi Calon Mahasiswa Baru Untuk Sistem Rekomendasi Program Studi Sarjana Berbasis Machine Learning Pratama, Ahmad R; Aryanto, Rio Rizky; Pratama, Arif Taufiq M
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 4: Agustus 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022934311

Abstract

Proses pemilihan program studi bagi calon mahasiswa baru, khususnya bagi mereka yang masih duduk di bangku SMA atau sederajat, merupakan salah satu momen pengambilan keputusan penting. Tak jarang pilihan yang salah berujung pada kegagalan studi atau kesulitan lain selepas menamatkan studi. Meski sudah mulai marak dilakukan di berbagai negara maju, sistem rekomendasi program studi berbasis machine learning untuk calon mahasiswa baru masih belum banyak dikembangkan di Indonesia. Penelitian ini dilakukan sebagai upaya rintisan sistem rekomendasi tersebut dengan menggunakan data pribadi dan akademik dari semua mahasiswa dan alumni program sarjana di Universitas Islam Indonesia (UII), di mana data prestasi akademik di masing-masing program studi digunakan sebagai ground truth label. Dari hasil penelitian ini, didapatkan sebuah model berbasis Random Forest (RF) dengan tingkat akurasi 86%, presisi 84%, recall 86%, dan AUC 97%. Model ini memiliki kinerja yang jauh lebih baik jika dibandingkan dengan model berbasis Multinomial Logistic Regression (MLR) maupun Support Vector Machine (SVM). Sesuai peta jalan penelitian, model yang dihasilkan dari penelitian ini akan digunakan untuk pengembangan sistem rekomendasi yang dapat membantu calon mahasiswa baru dalam memilih program studi saat proses penerimaan mahasiswa baru (PMB), khususnya di lingkungan UII. AbstractChoosing a major for the prospective undergraduate students is one of the most important moments in their life, especially for the high school graduates. Not infrequently, a wrong choice can lead to academic failure or even other difficulties after graduating from college. While a machine learning-based college major recommendation system is not strange in some developed countries, it is not the case in Indonesia. This study aims to serve as a pilot project for such a recommendation system by using personal and academic data of all students and alumni of the undergraduate programs in Universitas Islam Indonesia (UII) where academic achievement data is used as the ground truth label. Out of three models used and evaluated in this study, we found that Random Forest-based model to be the best option with an accuracy of 86%, precision on 84%, recall of 86%, and AUC of 97%. We also found that this model has a much better performance than other models with Multinomial Logistic Regression (MLR) or Support Vector Machine (SVM). The resulting model from this study will be deployed to develop a college major recommendation system that can help the prospective students choose their majors during college admission process, particularly in the context of UII as per research roadmap.