Claim Missing Document
Check
Articles

Found 3 Documents
Search

Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease Hastari, Delvi; Winanda, Salsa; Pratama, Aditya Rezky; Nurhaliza, Nana; Ginting, Ella Silvana
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 1 No. 2: PREDATECS January 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v1i2.865

Abstract

Rice is the most important crop in global food security and socioeconomic stability. A part of the world's population makes rice a food requirement but the problem is found that all rice varieties suffer from several diseases and pests. Therefore, it is necessary to ensure the quality of healthy and proper rice growth by detecting diseases present in rice plants and treatment of affected plants. In this study, the Convolutional Neural Network (CNN) algorithm was applied in classifying diseases on the leaves of rice plants by experimenting with several parameters and architecture to get the best accuracy. This study was conducted image classification of rice plant disease using CNN architecture ResNet-50V2 with data using preprocessing Augmentation. The test was conducted with three optimizers such as SGD, Adam, and RMSprop by combining various parameters, namely epoch, batch size, learning rate, and SGD and RMSprop optimizers. Division of image data with 70:30 ratio of training data and test data; 80:20; 90:10. From these results, it was found that Adam was the best optimizer in the 80:20 data division in this study with an accuracy level of 0.9992, followed by the SGD optimizer with an accuracy level of 0.9983, while the RMSProp optimizer was ranked third with an accuracy level of 0.9978.
Application of The Fuzzy Mamdani Method in Determining KIP-Kuliah Recipients for New Students Ardiansah, Yoga; Luchia, Nanda Try; Hastari, Delvi; Rifat, T. M. Fathin; Rachfaizi, Rendhy; Putri, Nanda Aulia; Ginting, Ella Silvana
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 2 No. 1: PREDATECS July 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v2i1.1087

Abstract

Lectures are the last level of education passed. However, the opportunity to obtain further education cannot be owned just like that by everyone because of the economic factors they experience. Therefore, an assessment method is needed to support the decision of KIP-Kuliah recipients at the lecture level for new students within the Faculty of Science and Technology, Sultan Syarif Kasim Riau State Islamic University. This research applies the Fuzzy Mamdani algorithm with Fuzzy Logic and is expected to be able to provide recommendations for worthy scholarship recipients so that the assistance provided is right on target. The results showed that 26,7% of students received the rejected status. Several experiments conducted, illustrate the performance of Fuzzy Logic in this research is very powerful in determining policies and as decision support. The implementation of the research results recommends the best selection from a series of decisions making.
Implementation of Deep Learning for Brain Tumor Classification from Magnetic Resonance Imaging Husna, Nur Alfa; Hendri, Desvita; Wajdi, Muhammad Farid; Ginting, Ella Silvana; Pramesthi, Chintya Harum
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 3 No. 1: PREDATECS July 2025
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Brain tumours are a medical problem that causes many people to die in the world due to brain cancer. Brain tumours are one of the dangerous types of brain cancer. MRI is well proven in the assessment of brain tumours, although conventional imaging has limitations in evaluating the extent of the tumour. In the field of medicine, there has been an increase in large amounts of data and traditional models cannot manage such data efficiently. So there is a need for medical image analysis that can store and analyse large medical data efficiently. This research will adopt a deep understanding transfer learning approach with four models namely VGG16, VGG19, MobileNetV2 and ResNet50 to classify 2 types of image shapes that detect whether a person has a brain tumour or not using Magnetic Resonance Imaging (MRI) data with Convolution Neutral Network (CNN). The number of datasets used is 4600 MRI images with 2 classes namely Brain Tumour and Health. The hyperparameters used are image size 224x224 pixels, training data ratio 70%, test data 30%, using Adam optimizer, learning rate 0.0001, using batch size 64 and epoch value 50. The best results in this study were obtained by MobileNetV2 architecture with an accuracy of 88.77%.