Benmebarek, Sadok
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Bearing Capacity Factor of Circular Footings on Two-layered Clay Soils Benmoussa, Samir; Benmebarek, Sadok; Benmebarek, Naima
Civil Engineering Journal Vol 7, No 5 (2021): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091689

Abstract

Geotechnical engineers often deal with layered foundation soils. In this case, the soil bearing capacity assessment using the conventional bearing capacity theory based on the upper layer properties introduces significant inaccuracies if the top layer thickness is comparable to the rigid footing width placed on the soil surface. Under undrained conditions the cohesion increases almost linearly with depth. A few theoretical studies have been proposed in the literature in order to incorporate the cohesion variation with depth in the computation of the ultimate bearing capacity of the strip and circular footings. Rigorous solutions to the problem of circular footings resting on layered clays with linear increase of cohesion do not appear to exist. In this paper, numerical computations using FLAC code are carried out to assess the vertical bearing capacity beneath rough rigid circular footing resting on two-layered clays of both homogeneous and linearly increasing shear strength profiles. The bearing capacity calculation results which depend on the top layer thickness, the two-layered clays strength ratio and the cohesion increase rates with depth are presented in both tables and graphs, and compared with previously published results available in the literature. The critical depth for circular footing is found significantly less than for strip footing. Doi: 10.28991/cej-2021-03091689 Full Text: PDF
Performance of Retaining Walls with Compressible Inclusions under Seismic Loading Dram, Abdelkader; Benmebarek, Sadok; Balunaini, Umashankar
Civil Engineering Journal Vol 6, No 12 (2020): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091631

Abstract

This paper investigates the possible application of recycled tyre shreds as compressible inclusion behind retaining walls under dynamic loading. It is a novel method to reduce the magnitude of earthquake-induced dynamic forces against rigid earth retaining wall structures. A numerical model to analyze the behavior of retaining walls with compressible cushion was developed in PLAXIS 2D, a two-dimensional finite element analysis based software, and the results were validated by comparison with experimental findings from physical models. The study evaluates the effects of thickness of compressible cushion and the friction angle of the backfill on the seismic performance of retaining walls. To assess the effect of frequency on wall performance with and without cushion, the wall was subjected to 15 cycles of sinusoidal excitation with acceleration amplitudes of 0.1g to 0.3g at a frequency of 7 Hz. The results from the numerical analysis indicate that the permanent displacements of the wall were reduced in the range of 38% to 52% and the horizontal earth pressures were reduced by about 55% to 76% due to the presence of tyre shreds as a compressible cushion between the wall and backfill. Results showed that the dynamic load against the retaining wall can be considerably reduced through the proposed technique. Doi: 10.28991/cej-2020-03091631 Full Text: PDF
FEM Optimisation of Seepage Control System Used for Base Stability of Excavation Ouzaid, Ilyes; Benmebarek, Naïma; Benmebarek, Sadok
Civil Engineering Journal Vol 6, No 9 (2020): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091579

Abstract

With the existence of a high groundwater level, the head difference between the inside and outside of an excavation may lead to the loss of stability of the excavation’s surface. Hence, a fundamental understanding of this occurrence is important for the design and construction of water-retaining structures. In some cases, the failure mechanism cannot be predicted exactly because of its mechanical complexity as well as a major lack of protection systems and not adopting effective countermeasures against this phenomenon. The article took a tranche from an 80 km long open sewer located in the Ruhr area, Germany as an example to establish a hydro-geological model and analyse the instability of the excavation base surface caused by the groundwater flow at 45m deep and to present the effectivity of an adopted drainage system inside the excavation pit as 39 columns of sand to relax the pore water pressure. By using the Finite Element Method (FEM) analysis, the failure mechanism was investigated before applying any countermeasures, and the total length of the adopted countermeasure system was minimised. Also, various position tests were performed on the adopted drainage system to confirm the optimised position. The results of this numerical study allowed the deduction of the importance of the used drainage system by achieving 44% more in the excavating process. After achieving the required excavation depth, a further increase of the sand columns’ penetration may be considered non-economic because, after adding extra depth, all the situations have the same safety factor. In addition, this can provide a reference for the optimised position of the sand columns where they must be applied right by the wall and limited by a critical distance, D/2, half of the embedded depth of the wall.