Claim Missing Document
Check
Articles

Found 3 Documents
Search

Performance Evaluation of Food Calorie Counter Mobile Application Based on CNN-YOLO Algorithms Hamzidah, Nurul Khaerani; Ulandari, Ayu; Parenreng, Mardawia Mabe; Ichzan As, Nur
Jambura Journal of Electrical and Electronics Engineering Vol 7, No 2 (2025): Juli - Desember 2025
Publisher : Electrical Engineering Department Faculty of Engineering State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjeee.v7i2.30595

Abstract

This article discusses the performance results of a mobile application for calculating food calories. This application can help users in managing and knowing their daily calorie intake and a healthy diet program. This application is based on image processing techniques using a combination of CNN-YOLOv5. The role of CNN is to classify data and extract labeled food image features using the supervised learning method based on images that have gone through the training process stages while YOLO plays a role in detecting food image data quickly and accurately. The design stages consist of UI design, UI creation, program implementation, and testing and evaluation. In analyzing the model, 1,736 training data, 149 test data and 206 validation data were used with 150 epochs of computation. The results of the model analysis obtained a precision of 1.00, confidence 0.962, recall 0.99 and F1 score 0.97. These results indicate that the system has met the requirements for use in further detection processes. This is evidenced by the application's ability to detect food images with 100% accuracy for all food classes in real-time or through image uploads. The test results show that the confidence value is influenced by the distance of the detector to the object, lighting intensity, camera resolution, color similarity, food variety and the background motif of the container used. The application is equipped with attractive features and UI displays such as an informative BMI calculator especially for users who are on a healthy diet program. The application of the CNN-YOLOv5 algorithm combination has been proven to be able to consistently and accurately improve application performance in detecting types of food and their calorie content in 100 grams so that it is worthy of being used as a reference in helping to monitor daily calorie intake and help a healthy diet program.Artikel ini membahas hasil kinerja aplikasi mobile penghtiung kalori makanan. Aplikasi ini dapat membantu pengguna dalam mengatur dan mengetahui asupan kalori harian serta program diet sehat. Aplikasi ini berbasis teknik pengolahan citra menggunakan kombinasi CNN-YOLOv5. Adapun peran CNN adalah untuk mengklasifikasi data serta mengekstraksi fitur citra makanan yang telah terlabel dengan menggunakan metode supervised learning berdasarkan citra yang telah melalui tahapan proses training sedangkan YOLO berperan dalam mendeteksi data citra makanan dengan cepat dan tepat. Tahapan perancangannya terdiri dari perancangan desaian UI, pembuatan UI, implementasi program, dan pengujian serta evaluasinya. Dalam menganalisis model digunakan 1.736 data latih, 149 data uji dan 206 data validasi dengan komputasi 150 epoch. Hasil analisis model diperoleh presisi 1.00, confidence 0.962, recall 0.99 serta F1 score 0.97. Hasil ini menunjukkan bahwa sistem sudah memenuhi syarat untuk digunakan dalam proses deteksi lebih lanjut. Hal ini dibuktikan dengan kemampuan aplikasi dalam mendeteksi citra makanan dengan akurasi 100% untuk semua kelas makanan secara real-time ataupun melalui upload citra. Hasil pengujian menunjukkan bahwa nilai confidence dipengaruhi oleh faktor jarak detektor ke objek, intensitas pencahayaan, resolusi kamera, kemiripan warna, variasi makanan serta adanya motif background wadah yang digunakan. Aplikasi dilengkapi dengan fitur dan tampilan UI yang menarik seperti kalkulator BMI yang informatif khususnya bagi pengguna yang sedang dalam program diet sehat. Penerapan kombinasi algoritma CNN-YOLOv5 terbukti mampu meningkatkan kinerja aplikasi secara konsisten dan akurat dalam mendeteksi jenis makanan beserta kandungan kolari dalam 100 gramnya sehingga layak dijadikan sebagai rujukan dalam membantu monitoring asupan kalori harian dan membantu program diet sehat.  
Aplikasi Monitoring Aset dan Inventaris Laboratorium Berbasis Web Pada Kampus Politeknik Negeri Ujung Pandang Parenreng, Mardawia Mabe; Nas, Mardhiyah
INTEK: Jurnal Penelitian Vol 6 No 1 (2019): April 2019
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1927.02 KB) | DOI: 10.31963/intek.v6i1.1126

Abstract

Polytechnic is a university that organizesvocational education in various science and technology clusters.The learning process in polytechnic is dominated by practicumthat is 70% and 30% theory. The amount of laboratorypercentage affects the large number of laboratory. Eachlaboratory has a laboratory responsible (technician) in charge ofrecording and monitoring the completeness and condition of thepracticum equipment. Tools and materials used in the process ofpracticum is an asset and laboratory inventory that must alwaysbe maintained and checked the condition of the equipment. InUjung Pandang State Polytechnic (PNUP) in terms of assetmonitoring and practicum inventory is still done manually.Therefore need to make an application to monitor assets andlaboratory inventory, especially on campus two. It is known thatsince 2014 there are three departments that have implementedthe teaching and learning process in two campuses includingseveral laboratories have also been transferred to the twocampuses, such as electrical engineering majors, majoring inbusiness administration and accounting majors. So with thisapplication will greatly help technicians because no longer do thereporting or request tool manually and with this application inmonitoring the condition of the tool is damaged and tools thatneed further improvement more easily and can be quicklyupdated. The creation of this system begins with the needsanalysis, design design as the basis of system development, theright of access consists of technicians of each laboratory andprocurement department on campus one, content creationconsists of laboratory data, checking tools and materials, repairtools and materials and demand tools and materials then printdata laboratory
Development of Android Based Laboratory Asset Monitoring and Inventory Application Parenreng, Mardawia Mabe; Nur, Fajria; Asriyadi, Asriyadi
INTEK: Jurnal Penelitian Vol 7 No 1 (2020): In Press
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/intek.v7i1.2286

Abstract

Each laboratory has a person in charge (technician) that has a duty of serving the laboratory in term of operational and maintenance. The main task of a technician is to record and monitor the condition and completeness of laboratory equipment in the laboratory. The data collection process is done by writing a tool request form, therefore mistakes often occur. In this research, an Android-based laboratory asset monitoring and inventory application was made. By using the application, it is expected that technicians become easier to make any duties of reports including report of damaged laboratory equipments, request for reparation, the unavailable practical materials etc simply by using a Smartphone. Testing the application with the Black-Box testing method to investigate the function of each application component whether it is running well or not. The results obtained from the Black-Box test are the functions of each component were running as expected. The case study is conducted for Electrical Engineering Department at State Polytechnic of Ujung Pandang (SPUP)