Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENERAPAN ALGORITMA K-MODES CLUSTERING DENGAN VALIDASI DAVIES BOULDIN INDEX PADA PENGELOMPOKKAN TINGKAT MINAT BELANJA ONLINE DI PROVINSI DAERAH ISTIMEWA YOGYAKARTA Az-zahra, Alyeska Astri; Marsaoly, Almira Fajriyati; Lestyani, Intan Putri; Salsabila, Roghibah; Madjida, Wa Ode Zuhayeni
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 9 No 1 (2021): VOLUME 9 NOMOR 1 TAHUN 2021
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/msa.v9i1.18555

Abstract

Kemajuan teknologi informasi dan komunikasi serta keberadaan internet yang semakin meluas di tengah masyarakat memunculkan kebiasaan-kebiasaan baru. Salah satunya adalah kebiasaan melakukan transaksi jual beli online. Kebiasaan baru tersebut menuntut para pemilik usaha untuk dapat menyesuaikan diri dengan perkembangan dunia transaksi saat ini Penelitian ini bertujuan untuk mengetahui pengelompokkan minat belanja online yang dilakukan masyarakat Daerah Istimewa Yogyakarta berdasarkan faktor jenis kelamin, umur, dan platform yang diminati dengan penerapan Data Mining. Dengan adanya pengelompokkan ini diharapkan dapat memberikan pengetahuan bagi para pemilik online shop agar dapat mengetahui platform mana yang sering digunakan oleh masyarakat DIY dalam melakukan belanja online. Metode yang digunakan dalam mengelompokkan tingkat minat belanja online adalah k-Modes Clustering dengan nilai k = 2,3,4,...,10. Davies-Boulden Index (DBI) digunakan untuk menentukan jumlah klaster terbaik. Berdasarkan hasil analisis, diperoleh jumlah klaster terbaik yaitu k=9 dengan nilai DBI sebesar1,3427. Klaster 5 merupakan klaster terbaik yang anggotanya sangat minat belanja melalui Marketplace dan Media Sosial. Marketplace yang diminati adalah Shopee, Bukalapak, dan Tokopedia, sedangkan Media Sosial yang diminati adalah Instagram, Facebook, dan Media Chatting. Klaster ini didominasi oleh laki-laki umur muda (15-24 tahun).