Claim Missing Document
Check
Articles

Found 4 Documents
Search

Optimasi PSO untuk Meningkatkan Performa Algoritma C4.5 dalam Memprediksi Risiko Kesehatan Kehamilan Ma'mur, Khaerul; Maulana, Asep Erlan
Jurnal Informatika Universitas Pamulang Vol 9 No 4 (2024): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v9i4.46039

Abstract

Nowadays, many diseases are feared to threaten the health of the body in pregnant women and their fetuses, so there is a need for early prevention. One's knowledge in predicting pregnancy health risks is important for prevention. However, precise prediction of such risks can be challenging, given the involvement of considerable and complex data. The C4.5 algorithm is widely used in data analysis. Unfortunately, its performance sometimes does not produce good accuracy. So, it needs to be improved by optimizing its structure parameters. For this reason, the purpose of this research involves the use of PSO (Particle Swarm Optimization) to find optimal parameters for the C4.5 algorithm that can increase the accuracy of pregnancy health risk prediction. The results show that the C4.5 algorithm model that has been optimized with PSO has an accuracy rate of 71.65%, and the standard C4.5 algorithm model only achieves an accuracy rate of 67.49%. There is a difference of 4.16%, which shows the superiority of the PSO optimization approach in improving prediction accuracy in the C4.5 algorithm. So, the application of the C4.5 algorithm optimized with PSO can be used as a positive implication in improving the health care of pregnant women and making more accurate medical decisions. Ultimately, this research illustrates the potential of PSO in optimizing the C4.5 data classification algorithm for health knowledge.
Optimization of C4.5 Algorithm Performance Using Particle Swarm Optimization in Predicting Stunting Risk Ma'mur, Khaerul
Jurnal Info Sains : Informatika dan Sains Vol. 15 No. 01 (2025): Informatika dan Sains , 2025
Publisher : SEAN Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Stunting is a serious global health problem, especially in developing countries. It is caused by chronic malnutrition in children, especially toddlers, which inhibits physical and cognitive growth. Stunting also has the potential to reduce quality of life and productivity in the future. Therefore, early detection of stunting risk is crucial so that appropriate interventions can be provided. Currently, data mining-based classification methods, such as the C4.5 algorithm, have been widely used to predict stunting risk. However, the performance of the C4.5 algorithm in terms of accuracy and efficiency is still lacking, especially in attribute selection and parameter settings. This research aims to improve the accuracy of the C4.5 algorithm in predicting stunting risk by implementing Particle Swarm Optimization (PSO) as an optimization technique. PSO is chosen because of its ability to find optimal solutions quickly and efficiently through the principles of particle social behavior. By using PSO, this research is expected to optimize the attribute selection process and parameter settings in the C4.5 algorithm, so as to produce a more accurate classification model in detecting stunting risk. The result of this research is a significant increase in prediction accuracy compared to the use of the C4.5 algorithm without optimization, so that the resulting model can be a more reliable tool for governments, health institutions, and other policy makers in designing interventions and strategies to overcome stunting.
Optimasi Web Log Menggunakan Teknik SEO On Page dan Off Page untuk Meningkatkan Trafik Pengunjung Organik Ma'mur, Khaerul
KAKIFIKOM : Kumpulan Artikel Karya Ilmiah Fakultas Ilmu Komputer Volume 5 Nomor 1 Tahun 2023
Publisher : UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A website domain, whether it is webpage or a blog, is influenced by many factors to appear on the first page of the Search Engine Result Page (SERP). One of the determining factors are the application of Search Engine Optimization (SEO) techniques, which have a significant impact on website ranking. The better the application, the easier it is for a website or a blog to occupy the top position on the SERP and get organic visitor traffic every day. SEO optimization needs to be done so that a blog that is already in the top position or on the first page of search results is not displaced by competitor websites. Without applying SEO, search engines will have difficulty recognized web pages on the internet and can result in low visitor traffic to the website. There are generally two methods for SEO optimization, namely on-page and off-page methods. Both methods are combined to achieve the best ranking on the SERP, which can increase visitor traffic. The initial step is to analyze the web log that is being researched. The initial analysis of web log measurement using Google Analytics founds that organic visitors were below 100 per a day on average, affecting the quality of the SERP. Based on this condition, SEO optimization on-page and off-page needs to be measured. After implementing and optimizing both methods, the web log's visitor traffic reviewed for some time to determine the development of SEO techniques. The results showed an increase in visitor traffic by 40%.
Hujan Buatan Untuk Pendingin Kandang Pada Plasma Berkah Perkasa Menggunakan Internet Of Things (Iot) Kholis Putra, Nur; Ma'mur, Khaerul
LOGIC : Jurnal Ilmu Komputer dan Pendidikan Vol. 2 No. 1 (2023): Logic : Jurnal Ilmu Komputer dan Pendidikan
Publisher : Shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kandang milik salah satu plasma berkah perkasa memiliki sistem pendinginan yang menggunakan kipas dan hujan buatan sebagai alat pendinginanya, di mana pada penelitian ini saya mengambil alat sprayer sebagai studi kasus penelitian ini, penerapan teknologi yang digunakan adalah dengan memanfaatkan Internet Of Things dalam sistem pendinginan ruangan kandang. Adanya lot menggantikan aktivitas dalam mengoprasikan sistem pendinginan saat ini. Di mana dalam pengoprasian (menghidupkan dan mematikan alat sprayer masih di lakukan secara manual yaitu dengan datang langsung ke kandang untuk melakukan penghidupan dan mematikan pompa air yang di gunakan untuk menghasilkan tekanan air untuk melakukan sprayer di kandang, di mana dengan adanya teknologi ini di harapkan dapat membantu setiap pengoprasian sistem pendinginan yang di gunakan. Di mana alat ini menggunakan yang terkoneksi pada android. Di mana pada pengaplikasianya alat yang terhubung menggunakan koneksi Wi-Fi dengan ketentuan sensor yang telah diatur berdasarkan kebutuhan suhu yang sesuai pada ruangan kandang.