Saleh, Hayder Adnan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Facial recognition based on enhanced neural network AL-Qinani, Iman Hussein; Saleh, Kawther Thabt; Saleh, Hayder Adnan
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp207-216

Abstract

Accurate automatic face recognition (FR) has only become a practical goal of biometrics research in recent years. Detection and recognition are the primary steps for identifying faces in this research, and The Viola-Jones algorithm implements to discover faces in images. This paper presents a neural network solution called modify bidirectional associative memory (MBAM). The basic idea is to recognize the image of a human's face, extract the face image, enter it into the MBAM, and identify it. The output ID for the face image from the network should be similar to the ID for the image entered previously in the training phase. The tests have conducted using the suggested model using 100 images. Results show that FR accuracy is 100% for all images used, and the accuracy after adding noise is the proportions that differ between the images used according to the noise ratio. Recognition results for the mobile camera images were more satisfactory than those for the Face94 dataset. 
Classification of mammograms based on features extraction techniques using support vector machine Hussein Saeed, Enas Mohammed; Saleh, Hayder Adnan; Khalel, Enam Azez
Computer Science and Information Technologies Vol 2, No 3: November 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/csit.v2i3.p121-131

Abstract

Now mammography can be defined as the most reliable method for early breast cancer detection. The main goal of this study is to design a classifier model to help radiologists to provide a second view to diagnose mammograms. In the proposed system medium filter and binary image with a global threshold have been applied for removing the noise and small artifacts in the pre-processing stage. Secondly, in the segmentation phase, a hybrid bounding box and region growing (HBBRG) algorithm are utilizing to remove pectoral muscles, and then a geometric method has been applied to cut the largest possible square that can be obtained from a mammogram which represents the ROI. In the features extraction phase three method was used to prepare texture features to be a suitable introduction to the classification process are first order (statistical features), local binary patterns (LBP), and gray-level co-occurrence matrix (GLCM), finally, SVM has been applied in two-level to classify mammogram images in the first level to normal or abnormal, and then the classification of abnormal once in the second level to the benign or malignant image. The system was tested on the MAIS the Mammogram image analysis Society (MIAS) database, in addition to the image from the Teaching Oncology Hospital, Medical City in Baghdad, where the results showed achieving an accuracy of 95.454% for the first level and 97.260% for the second level, also, the results of applying the proposed system to the MIAS database alone were achieving an accuracy of 93.105% for the first level and 94.59 for the second level.