Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Telecommunication, Electronics and Control Engineering (JTECE)

Design of a Textile Antenna Using Metasurface Technology for Wireless Body Area Networks Nurafifah Sirait; Firhan Fathurahman; Mudrik Alaydrus; Umaisaroh Umaisaroh
Journal of Telecommunication Electronics and Control Engineering (JTECE) Vol 6 No 2 (2024): Journal of Telecommunication, Electronics, and Control Engineering (JTECE)
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/jtece.v6i2.1326

Abstract

Recently, continuous development and distinctive growth have been observed in implementing wearable sensors and flexible devices in real life. This paper shows a wearable textile antenna design based on a metasurface. It operates in the 3.5 GHz. A proposed model provides light on the metasurface's operation. The prototype of the textile antenna using taslan material was observed and exhibited a relative permittivity of 1.41. Based on these values, we designed a square antenna with an amount of parasitic square around modeled as a planar array. We observed the measured reflection coefficient of the three conditions and saw similar results of the reflection coefficient, which is around -25 dB at 3.5 GHz frequency, and the radiation diagram of the antennas reproduced the simulated one.
T-Shaped MIMO Antenna Design with Defected Ground Structure and Parasitic Elements for 5G Application Sherila, Ayu Mika; Umaisaroh, Umaisaroh; Alaydrus, Mudrik
Journal of Telecommunication Electronics and Control Engineering (JTECE) Vol 7 No 1 (2025): Journal of Telecommunication, Electronics, and Control Engineering (JTECE)
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/jtece.v7i1.1618

Abstract

5G technology is designed to improve efficiency, network capacity, data rate, and coverage with low power consumption. This requires the design of suitable antennas for 5G wireless communications to achieve optimal bandwidth, radiation, efficiency, and performance. MIMO antenna designs use multiple antennas and face the main challenge of reducing mutual coupling between adjacent antenna elements. In this study, the MIMO antenna is designed using T-shaped DGS Technique and parasitic elements. The DGS technique is developed by creating a specific area on the ground plane of the antenna to improve its performance. By incorporating DGS concepts and parasitic elements into the design, the aim is to achieve large bandwidth and high gain. This antenna has dimensions of 52 mm x 12 mm and is simulated using Ansys HFSS software. Measurement results for the antenna using Rogers Duroid RT5880 substrate show a mutual coupling value of -54.2 dB, return loss of -11.1 dB, gain of 13.11 dB, and a sufficiently wide bandwidth. Thus, the proposed antenna can operate at a frequency of 28 GHz, meeting the requirements for 5G applications.