Abba Ari, Ado Adamou
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A new approach to joint resource management in MEC-IoT based federated meta-learning Samafou, Faustin; Amine Adoum, Bakhit; Abba Ari, Ado Adamou; Marius Fidel, Faitchou; Moungache, Amir; Armi, Nasrullah; Mourad Gueroui, Abdelhakh
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7993

Abstract

MEC and IoT are rapidly expanding technologies that offer numerous opportunities to enhance efficiency and application performance. However, the huge volume of data generated by IoT devices, coupled with computational and latency constraints, poses data processing challenges. To address this within the MEC architecture, deploying computing servers at the network edge near IoT devices is a promising approach. This reduces latency and traffic load on the core network while improving the user experience. However, offloading computations task from IoT devices to MEC servers and efficiently allocating computing resources is a complex problem. IoT tasks may have specific requirements in terms of latency, bandwidth and energy efficiency, while computing resources and capacities maybe limited or shared between several users. We propose an approach called FedMeta2Ag, which we evaluate using the MNIST database. With 20 epochs, the training accuracy reached 91.5%, while the test accuracy achieved 92.0%. Performance consistently improved during the initial 20 iterations and gradually stabilized thereafter. Additionally, we compared the performance of our proposed model with existing methods, finding that our approach outperforms existing models in predicting performance more accurately. Thus, this approach effectively meets the demanding performance requirements of wireless communication systems.
PdM-FSA: predictive maintenance framework with fault severity awareness in Industry 4.0 using machine learning Moulla, Donatien Koulla; Mnkandla, Ernest; Aboubakar, Moussa; Abba Ari, Ado Adamou; Abran, Alain
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp7211-7223

Abstract

Predictive maintenance contributes to Industry 4.0, as it enables a decrease in maintenance costs and downtime while aiming to increase production and return on investment. Despite the increasing utilization of machine learning techniques in predictive maintenance in industrial systems over the past few years, several challenges remain to be addressed in the implementation of ML, including the quality of the data collected, resource constraints, and equipment heterogeneity. This study proposes an adaptive framework for predictive maintenance in the context of Industry 4.0, specifically in internet of things (IoT) systems, using machine learning (ML) models. In particular, this study introduces PdM-FSA, a new framework based on an ensemble classifier that takes advantage of four widely adopted ML models in the predictive maintenance literature: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and k-nearest neighbors (KNN). The performance evaluation results showed that the PdM-FSA framework can perform well for predictive maintenance according to the severity of equipment malfunctions in a smart factory. The results of this study provide significant knowledge to researchers and practitioners on predictive maintenance in the context of Industry 4.0. and enables the optimization of processes and improves productivity.