El Alami, Rachid
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimized decoder for low-density parity check codes based on genetic algorithms El Ouakili, Hajar; El Ghzaoui, Mohammed; El Alami, Rachid
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2717-2724

Abstract

Low-density parity check (LDPC) codes, are a family of error-correcting codes, their performances close to the Shannon limit make them very attractive solutions for digital communication systems. There are several algorithms for decoding LDPC codes that show great diversity in terms of performance related to error correction. Also, very recently, many research papers involved the genetic algorithm (GA) in coding theory, in particular, in the decoding linear block codes case, which has heavily contributed to reducing the bit error rate (BER). In this paper, an efficient method based on the GA is proposed and it is used to improve the power of correction in terms of BER and the frame error rate (FER) of LDPC codes. Subsequently, the proposed algorithm can independently decide the most suitable moment to stop the decoding process, moreover, it does not require channel information (CSI) making it adaptable for all types of channels with different noise or intensity. The simulations show that the proposed algorithm is more efficient in terms of BER compared to other LDPC code decoders.
A novel slotted antenna design for future Terahertz applications Youssef, Amraoui; Halkhams, Imane; El Alami, Rachid; Ouazzani Jamil, Mohammed; Qjidaa, Hassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2708-2716

Abstract

A slotted patch antenna operating at 118 GHz is proposed to address challenges in the terahertz (THz) frequency band for wireless communication systems. The antenna design, utilizing a Rogers RO3003 substrate, which has a dielectric constant of ???????? = 3 and tan ???? = 0.001, strategically incorporates slots to enhance key performance parameters. Copper is employed for the ground and radiating patch, and a microstrip feeding method powers the antenna. High frequency structure simulator (HFSS) software is used for design and simulation, revealing resonance at 0.118 THz with a reflection coefficient of -42.41 dB and an impedance bandwidth of 4.42 GHz (115.84–120.26 GHz). At the operating frequency, the antenna exhibits a gain of 7.36 dB, maximum directivity of 7.38 dB, the voltage standing wave ratio (VSWR) of 1.01, and 99.75% radiation efficiency, all within a compact size of 1.5×1.3×0.1 mm³. The suggested antenna outperforms recent counterparts, making it suitable for applications like security screening and wireless communication systems (5G). Future efforts will target bandwidth expansion, gain enhancement, and further size reduction to enhance overall performance.