Nugroho, Ferry Anggoro Ardy
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Synthesis and Characterization of ZnO Thin Layers using Sol-Gel Spin Coating Method Ahzan, Sukainil; Darminto, Darminto; Nugroho, Ferry Anggoro Ardy; Prayogi, Saiful
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 5 No. 2: July 2021
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/esaintika.v5i2.506

Abstract

The potential of thin layer in many applications has led to research on the development of many new materials and their fabrication methods. This study aimed to synthesize a thin layer of ZnO using the facile and low-cost sol-gel spin coating method. The ZnO thin layer is deposited on a glass substrate and analyzed to observe the influence of the deposition variables such as heating and rotation speed, and its aging. The characterization methods include the identification of the formed phase using X-Ray Diffractometer (XRD), and the microstructure and elemental composition using Scanning Electron Microscopy (SEM) coupled with EDS (Energy Dispersive Spectrometer). The study shows that a thin layer of ZnO is successfully deposited on a glass substrate by heat treatment at temperatures of 300 oC and 500 oC. Furthermore, XRD reveals that higher heating temperatures result in higher diffraction peak intensity. At a heating temperature of 300 °C crystals are formed but are not yet perfectly oriented, while they are at 500 °C. On the other hand, higher spin coating rotation speed gives rise to lower intensity of diffraction peak. The ZnO crystallization is easier to form in the coating process with a lower rotation (1500 rpm). Interestingly, the thin layer is stable over time where there is no significant change in each sample, both in terms of intensity and width of the ZnO crystal peak. The results indicate that gel precursor aged less than two days can form ZnO crystals. Finally, SEM results show that the surface morphology of the ZnO layer heated at 500 oC has an average grain size of 300 nm. Based on the cross-sectional results of SEM shows that the higher the coating rotation speed has resulted the thinner of the ZnO layer, where the thickness of the resulting layer is on order >5 mm.
Fabrication and Characterization of Supported Porous Au Nanoparticles Nugroho, Ferry Anggoro Ardy
Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika Vol. 9 No. 1: March 2025
Publisher : Lembaga Penelitian dan Pemberdayaan Masyarakat (LITPAM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36312/e-saintika.v9i1.2427

Abstract

Porous plasmonic nanoparticles offer unique advantages for sensing and catalysis due to their high surface-to-volume ratio and localized electromagnetic field enhancements at nanoscale pores, or “hotspots.” However, current fabrication techniques, which are based on colloidal synthesis, face challenges in achieving precise control over particle size, shape, and porosity. Here, we present a robust nanofabrication method to produce supported arrays of porous Au nanoparticles with excellent dimensional and compositional control. By combining lithographically patterned AuAg alloy nanoparticles and selective dealloying via nitric acid, we achieve particle porosity without compromising particle morphology. Specifically, the method allows fabrication of supported porous nanoparticles with tunable dimension and porosity. Our approach demonstrates precise control of nanoparticle porosity by varying the initial Ag content in the alloy. Optical characterization reveals a blueshift in the extinction peak with increasing porosity, attributed to the reduced effective refractive index from intraparticle voids. Notably, a tunable shift of up to 100 nm in the plasmonic peak is observed, demonstrating the potential for fine-tuning optical properties. This study highlights the versatility of the proposed method in fabricating well-defined porous plasmonic nanoparticles and their ability to modulate optical properties through porosity control. These findings not only expand the toolkit for designing advanced plasmonic materials but also open pathways for applications in plasmon-mediated sensing, catalysis, and photonic devices.