Hadinata, Patrick Nicholas
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deep Convolutional Neural Network untuk Mendeteksi Retak pada Permukaan Beton yang Memiliki Void Hadinata, Patrick Nicholas; Simanta, Djoni; Eddy, Liyanto
Journal of Sustainable Construction Vol 1 No 1 (2021): Journal of Sustainable Construction
Publisher : Universitas Katolik Parahyangan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1562.616 KB) | DOI: 10.26593/josc.v1i1.5151

Abstract

Convolutional neural network berbasis encoder-decoder telah dirancang dan dilatih menggunakan dataset eksternal untuk mendeteksi retak pada permukaan beton yang relatif sederhana. Namun, pada kenyataannya permukaan beton memiliki banyak fitur seperti void pada permukaan yang disebabkan oleh udara yang terperangkap saat proses pencampuran beton. Oleh karena itu, pada penelitian ini kemampuan convolutional neural network akan diteliti lebih lanjut untuk mendeteksi retak pada permukaan beton yang memiliki void. Tujuan pertama penelitian ini adalah menguji model yang dilatih dengan dataset eksternal pada permukaan beton ber-void. Jika model tidak berhasil membedakan void dengan retak, maka tujuan kedua penelitian ini adalah menyusun dataset pelatihan internal baru yang secara khusus membedakan void dengan retak, yang kemudian akan ditambahkan pada dataset eksternal untuk diinvestigasi performanya. Penelitian ini menggunakan arsitektur U-Net dan arsitektur DeepLabV3+ sebagai encoder-decoder untuk mengoperasikan semantic image segmentation. Model encoder-decoder yang dilatih dengan dataset eksternal tidak berhasil membedakan void dengan retak saat pengujian. Maka, dataset internal yang terdiri dari gambar beton ber-void dibentuk dan digabungkan dengan dataset eksternal. Dengan penambahan dataset internal yang baru, hasil pengujian menunjukkan bahwa model berhasil membedakan void dengan retak pada permukaan beton. U-Net mencapai nilai F1 sebesar 85,92%, sedangkan DeepLabV3+ mencapai nilai F1 sebesar 84,09%.
Deep Convolutional Neural Network untuk Mendeteksi Retak pada Permukaan Beton yang Memiliki Void Hadinata, Patrick Nicholas; Simanta, Djoni; Eddy, Liyanto
Journal of Sustainable Construction Vol 1 No 1 (2021): Journal of Sustainable Construction
Publisher : Universitas Katolik Parahyangan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26593/josc.v1i1.5151

Abstract

Convolutional neural network berbasis encoder-decoder telah dirancang dan dilatih menggunakan dataset eksternal untuk mendeteksi retak pada permukaan beton yang relatif sederhana. Namun, pada kenyataannya permukaan beton memiliki banyak fitur seperti void pada permukaan yang disebabkan oleh udara yang terperangkap saat proses pencampuran beton. Oleh karena itu, pada penelitian ini kemampuan convolutional neural network akan diteliti lebih lanjut untuk mendeteksi retak pada permukaan beton yang memiliki void. Tujuan pertama penelitian ini adalah menguji model yang dilatih dengan dataset eksternal pada permukaan beton ber-void. Jika model tidak berhasil membedakan void dengan retak, maka tujuan kedua penelitian ini adalah menyusun dataset pelatihan internal baru yang secara khusus membedakan void dengan retak, yang kemudian akan ditambahkan pada dataset eksternal untuk diinvestigasi performanya. Penelitian ini menggunakan arsitektur U-Net dan arsitektur DeepLabV3+ sebagai encoder-decoder untuk mengoperasikan semantic image segmentation. Model encoder-decoder yang dilatih dengan dataset eksternal tidak berhasil membedakan void dengan retak saat pengujian. Maka, dataset internal yang terdiri dari gambar beton ber-void dibentuk dan digabungkan dengan dataset eksternal. Dengan penambahan dataset internal yang baru, hasil pengujian menunjukkan bahwa model berhasil membedakan void dengan retak pada permukaan beton. U-Net mencapai nilai F1 sebesar 85,92%, sedangkan DeepLabV3+ mencapai nilai F1 sebesar 84,09%.