Putri, Nitami Lestari
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Predicting Respiratory Conditions Using Random Forest and XGBoost Dhiyaussalam, Dhiyaussalam; Yusuf, Ahmad; Wardiah, Isna; Putri, Nitami Lestari
Journal of Information System and Informatics Vol 7 No 2 (2025): June
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v7i2.1124

Abstract

This study examines the performance of Random Forest and XGBoost in predicting the diagnosis and severity of respiratory diseases using a simulated dataset of 2,000 patient records. The models were tested on two classification tasks: identifying disease types (e.g., pneumonia, influenza) and classifying severity levels (mild, moderate, severe). Both models achieved perfect accuracy in severity classification, with 1.0000 ± 0.0000 cross-validation scores, demonstrating strong stability under balanced class distributions. However, in the diagnosis task, Random Forest underperformed on minority classes, particularly pneumonia, with a recall of 0.18 and F1-score of 0.31. XGBoost, on the other hand, achieved superior results across all classes, including minority cases, with 0.9825 ± 0.0170 cross-validation accuracy and perfect test set performance. These findings highlight XGBoost’s robustness in handling imbalanced and multiclass medical data, making it a promising candidate for clinical decision support. Future work should address class imbalance and explore explainability techniques to improve trust and transparency in real-world applications.
Intrusion Detection System Berbasis Seleksi Fitur Dengan Kombinasi Filter Information Gain Ratio Dan Correlation Putri, Nitami Lestari; Nugroho, Radityo Adi; Herteno, Rudy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813154

Abstract

Intrusion Detection System merupakan suatu sistem yang dikembangkan untuk memantau dan memfilter aktivitas jaringan dengan mengidentifikasi serangan. Karena jumlah data yang perlu diperiksa oleh IDS sangat besar dan banyaknya fitur-fitur asing yang dapat membuat proses analisis menjadi sulit untuk mendeteksi pola perilaku yang mencurigakan, maka IDS perlu mengurangi jumlah data yang akan diproses dengan cara mengurangi fitur yang dapat dilakukan dengan seleksi fitur. Pada penelitian ini mengkombinasikan dua metode perangkingan fitur yaitu Information Gain Ratio dan Correlation dan mengklasifikasikannya menggunakan algoritma K-Nearest Neighbor. Hasil perankingan dari kedua metode dibagi menjadi dua kelompok. Pada kelompok pertama dicari nilai mediannya dan untuk kelompok kedua dihapus. Lalu dilakukan klasifikasi K-Nearest Neighbor dengan menggunakan 10 kali validasi silang dan dilakukan pengujian dengan nilai k=5. Penerapan pemodelan yang diusulkan menghasilkan akurasi tertinggi sebesar 99.61%. Sedangkan untuk akurasi tanpa seleksi fitur menghasilkan akurasi tertinggi sebesar 99.59%. AbstractIntrusion Detection System is a system that was developed for monitoring and filtering activity in network with identified of attack. Because of the amount of the data that need to be checked by IDS is very large and many foreign feature that can make the analysis process difficult for detection suspicious pattern of behavior, so that IDS need for reduce amount of the data to be processed by reducing features that can be done by feature selection. In this study, combines two methods of feature ranking is Information Gain Ratio and Correlation and classify it using K-Nearest Neighbor algorithm. The result of feature ranking from the both methods divided into two groups. in the first group searched for the median value and in the second group is removed. Then do the classification of  K-Nearest Neighbor using 10 fold cross validation and do the tests with values k=5. The result of the  proposed modelling produce the highest accuracy of 99.61%. While the highest accuracy value of the not using the feature selection is 99.59%.
Pengaruh Klasifikasi Sentimen Pada Ulasan Produk Amazon Berbasis Rekayasa Fitur dan K-Nearest Negihbor Putri, Nitami Lestari; Warsito, Budi; Surarso, Bayu
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241117376

Abstract

Ulasan online menjadi faktor penting yang mendorong konsumen untuk membeli barang di e-commerce. Dalam e-commerce, ulasan pelanggan sebelumnya dapat membantu pembeli membuat keputusan yang lebih baik dengan memberikan informasi tentang kualitas produk, kekuatan dan kelemahan, perilaku penjual, harga, dan waktu pengiriman. Namun, keberadaan ulasan palsu menimbulkan tantangan dalam menilai sentimen yang diungkapkan oleh pelanggan asli secara benar. Dalam penelitian ini, berfokus pada analisis sentimen dan bertujuan untuk mengeksplorasi peran sentimen dalam ulasan produk Amazon. Penelitian ini menggunakan kombinasi fitur dari konten ulasan dengan menerapkan klasifikasi K-Nearest Neighbor untuk mengklasifikasikan polaritas sentimen ulasan secara akurat. Dalam mengekstrak skor polaritas dari ulasan, penelitian ini menggunakan pendekatan analisis sentimen berbasis leksikon yaitu Textblob Library dan menetapkan label sentimen dari ulasan produk. Hasil dari pemodelan yang diusulkan mencapai tingkat akurasi sebesar 83% yang menunjukkan keefektifan pemodelan yang diusulkan dalam analisis sentimen. Hasil dari penelitian ini dapat membantu konsumen dalam membuat keputusan pembelian dan membantu penjual dalam meningkatkan nilai produk dan layanan mereka berdasarkan feedback yang diberikan oleh pelanggan.