Claim Missing Document
Check
Articles

Found 4 Documents
Search

Sistem Kendali Suhu dan Kelembaban Dengan Long Range Pada Kumbung Jamur Menggunakan Logika Fuzzy Pratama, Indah Sari Putri; Suroso, Suroso; Agung, M. Zakuan
Jurnal Teknologi Informasi dan Pendidikan Vol. 16 No. 2 (2023): Jurnal Teknologi Informasi dan Pendidikan
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jtip.v16i2.770

Abstract

Room temperature and humidity are parameters required for quality mushroom growth. To get the appropriate and stable temperature and humidity values, a control system is needed. This test aims to create a temperature and humidity control system using IoT-based fuzzy logic implementation. This temperature and humidity control system, uses the main components of DHT22 sensors, NodeMCU ESP32, Arduino nano and Lora. The transmitter is placed in the mushroom barn. The transmitter control system stabilizes the temperature and humidity in the barn using a predetermined fuzzy method. After that, the data processed at the transmitter will be sent to the receiver via Lora communication. At the receiver, the device is placed in the mushroom farmer's house, which will capture the data sent by the transmitter. This recognition system has a good level of accuracy against the DHT22 sensor and Hygrometer, which has a difference of 1℃ or a difference of 2.08%. In contrast, for humidity, it has a total difference of 16% or 97.61%. When testing using fuzzy logic, the resulting temperature and humidity are stable, and the predetermined fuzzy logic carries out watering.
Klasifikasi Alat Musik Tradisional dengan Metode Machine Learning dengan Librosa dan Tensorflow pada Python Anggeli, Puja; Suroso, S; Agung, M. Zakuan
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 5, No 2 (2021): EDISI SEPTEMBER
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v5i2.390

Abstract

The development of artificial intelligence technology AI (Artificial Intelligence) has been widely applied in various fields of daily life. AI (Artificial Intelligence) is divided into several branches, one of which is Machine Learning. Machine Learning is developed based on statistics, mathematics and data mining so that machines can learn by analyzing data without needing to be reprogrammed. With the development of the music world, not many people and the current generation know about traditional music from their respective regions. Traditional musical instruments produce sound art that has its own characteristics and uniqueness which is passed down from generation to generation. Therefore, to simplify the process of recognizing each musical instrument, a system was created that can classify traditional musical instruments using machine learning. The methods used in this research are librosa and tensorflow, where tensorflow is used for numerical computing and large-scale machine learning projects that have the best performance in classifying. In this study using Python 3.6 as a programming language and using PyCharm as a Integrated Development Environment (IDE). From the results, the system accuracy as expected after being tested several times, namely 91%.
Klasifikasi Alat Musik Tradisional dengan Metode Machine Learning dengan Librosa dan Tensorflow pada Python Anggeli, Puja; Suroso, S; Agung, M. Zakuan
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 5, No 2 (2021): EDISI SEPTEMBER
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v5i2.390

Abstract

The development of artificial intelligence technology AI (Artificial Intelligence) has been widely applied in various fields of daily life. AI (Artificial Intelligence) is divided into several branches, one of which is Machine Learning. Machine Learning is developed based on statistics, mathematics and data mining so that machines can learn by analyzing data without needing to be reprogrammed. With the development of the music world, not many people and the current generation know about traditional music from their respective regions. Traditional musical instruments produce sound art that has its own characteristics and uniqueness which is passed down from generation to generation. Therefore, to simplify the process of recognizing each musical instrument, a system was created that can classify traditional musical instruments using machine learning. The methods used in this research are librosa and tensorflow, where tensorflow is used for numerical computing and large-scale machine learning projects that have the best performance in classifying. In this study using Python 3.6 as a programming language and using PyCharm as a Integrated Development Environment (IDE). From the results, the system accuracy as expected after being tested several times, namely 91%.
Sosialisasi Penerapan Digitalisasi Dalam Penataan Administrasi Laboratorium Teknik Telekomunikasi Nurhaliza, Rindu; Zefi, Suzan; Anugraha, Nurhajar; Agung, M. Zakuan; Duri, Rapiko; Annisa, Annisa; Ramadhona, Yuris
Jurnal Masyarakat Madani Indonesia Vol. 4 No. 4 (2025): November
Publisher : Alesha Media Digital

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59025/2xqh8b88

Abstract

Digitalisasi peminjaman alat dan ruangan di Laboratorium Teknik Telekomunikasi Politeknik Negeri Sriwijaya bertujuan meningkatkan efisiensi, mempercepat administrasi, dan mendukung sistem paperless. Sistem berbasis web ini dikembangkan dengan PHP dan MySQL serta diuji menggunakan XAMPP. Hasilnya, proses peminjaman menjadi lebih cepat, akurat, dan terdokumentasi dengan baik melalui fitur login, form peminjaman, validasi data, pemantauan status, dan laporan. Digitalisasi ini berhasil mengurangi kesalahan, meningkatkan transparansi, dan mempercepat pengambilan keputusan. Selain itu, kegiatan ini dilakukan dengan metode sosialisasi kemudian dilanjutkan dengan uji coba website oleh mahasiswa, Tenaga Kependidikan dan Dosen selaku user. Hasil uji coba website menunjukkan bahwa sistem yang dibuat layak digunakan dan diharapkan dapat membantu dalam pengelolaan alat dan peminjaman ruangan pada Laboratorium Teknik Telekomunikasi agar lebih efisien. Berdasarkan hasil kuesioner nilai rata-rata uji kelayakan sistem sebesar 86,1% sangat layak.