Tanuwijaya, William
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi TF-IDF dan Cosine Similarity untuk Penyaringan Dokumen Berita Program Makan Siang Gratis Pemerintah Indonesia Tanuwijaya, William; Setiawan, Christofer Evan; Irsyad, Hafiz; Rahman, Abdul
DEVICE : JOURNAL OF INFORMATION SYSTEM, COMPUTER SCIENCE AND INFORMATION TECHNOLOGY Vol 6, No 2: DESEMBER 2025
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/device.v6i2.6724

Abstract

Penelitian ini menerapkan metode Information Retrieval (IR) dalam menyaring berita yang relevan terkait program makan siang gratis yang diselenggarakan oleh pemerintah Indonesia, sebuah program yang ditujukan untuk meningkatkan gizi pelajar dan mencegah terjadinya stunting, namun juga menampilkan data berita dari berbagai media nasional, preprocessing data (termasuk case folding, tokenisasi, stopword removal dan stemming), pembobotan kata menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF), serta menggunakan pengukuran tingkat relevansi menggunakan Cosine Similarity. Dataset terdiri dari lima berita dengan topik terkait, yang IR mampu menyaring dokumen secara efektif. Dari lima Berita, empat di antaranya terdeteksi relevan dan satu tidak relevan. Evaluasi model menghasilkan akurasi sebesar 80%, precision 100%, recall 80% dan f1-score 89%. Nilai-nilai ini menunjukkan bahwa sistem dapat mengidentifikasi relevansi konten Berita terhadap topik yang terutama dalam kasus judul Berita yang bersifat clickbait. Penelitian ini juga memberikan kontribusi terhadap pengembangan sistem penyaringan informasi yang lebih efisien dan akurat dalam konteks isu publik.
Residual-Gated Attention U-Net with Channel Recalibration for Polyp Segmentation in Colonoscopy Images Tanuwijaya, William; Yohannes
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 3 (2025): November
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/4qmfa987

Abstract

This study proposed a modification to the Attention U-Net architecture by integrating a Residual-Gated mechanism and Squeeze-and-Excitation (SE) Block-based channel recalibration within the Attention Gate to enhance feature selectivity in polyp segmentation. This integration reinforces both spatial and channel attention, enabling the model to better highlight polyp regions while suppressing irrelevant background features. Experiments were conducted on three colonoscopy datasets, CVC-ClinicDB, CVC-ColonDB, and CVC-300, using IoU and DSC metrics. Compared to the Attention U-Net baseline, the proposed model achieves noticeable improvements, with performance gains of mIoU 0.0043 and mDSC 0.0094 on CVC-ClinicDB, mIoU 0.0012 on CVC-ColonDB, and a larger margin of mIoU 0.0224 and mDSC 0.0127 on CVC-300. The best results were obtained on CVC-ClinicDB (mIoU 0.8889, mDSC 0.9412). Although the absolute scores on CVC-ClinicDB and CVC-ColonDB are lower than those reported in several recent studies, these datasets contain higher variability in polyp size, boundary ambiguity, and illumination, contributing to more challenging segmentation conditions. Visual evaluation further shows smoother and more coherent boundaries, especially on small or low-contrast polyps. Overall, the integration of the residual-gated mechanism and SE block within the attention gate effectively improves model accuracy and generalization, particularly in challenging scenarios.