Cahyani, Retno Tri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Pengelompokan Laporan Panggilan untuk Perencanaan Respons Berbasis Data: Clustering Analysis of Call Reports for Data-Driven Response Planning Cahyani, Retno Tri; Yuadi, Imam; Margono, Hendro
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 4 (2025): MALCOM October 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i4.2168

Abstract

Setiap tahun, Call Center 112 Kabupaten Sidoarjo menerima ribuan laporan dari masyarakat, yang mencakup berbagai kejadian seperti kebakaran, kecelakaan lalu lintas, darurat medis, kabel menjuntai, pohon tumbang, dan masalah PJU. Penelitian ini menganalisis 6.207 laporan berfokus pada koordinat lokasi kejadian dengan tujuan untuk mengelompokkan pola spasial laporan sehingga dapat mendukung tata Kelola pelayanan publik yang lebih responsif. Untuk mencapai tujuan tersebut digunakan dua algoritma pembelajaran yaitu K-Means dan K-Medoids. Metode Elbow digunakan untuk menentukan jumlah klaster (k=3). Metode ini menunjukkan titik optimum ketika nilai inertia mulai menurun secara linier. Analisis menggunakan Google Colab dan ada dukungan pustaka untuk visualisasi seperti scikit-learn, pyclustering, dan matplotlib. Hasil visualisasi menunjukkan bahwa K-Medoids membentuk klaster yang lebih terstruktur secara geografis, sedangkan K-Means menghasilkan klaster yang tumpang tindih. Silhouette Score 0,479, yang lebih tinggi dari K-Means hanya 0,193, K-Medoids terbukti lebih unggul dalam membentuk klaster yang kompak dan konsisten. K-Medoids berhasil mengelompokkan wilayah yang rawan insiden (Waru, Gedangan) dan wilayah infrastruktur dominan (Sidoarjo, Candi) ke dalam klaster yang sesuai secara spasial. Analisis ini mengidentifikasi fitur tiap klaster berdasarkan jenis laporan, mulai dari darurat medis hingga masalah PJU. Penemuan ini berguna untuk mendukung alokasi sumber daya dan layanan publik yang lebih efisien saat membangun kota pintar.