Kartika, Qurrata A'yun
Tangerang Selatan Climatological Station, Agency For Meteorology, Climatology, And Geophysics (BMKG), Indonesia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

The Effect of Precipitation on Scavenging of PM2.5 in Jakarta Based on Distributed Lag Non-Linear Models Virgianto, Rista Hernandi; Kinanti, Nanda Putri; Ferdiansyah, Ervan; Kartika, Qurrata A’yun
IPTEK The Journal for Technology and Science Vol 32, No 2 (2021)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v32i2.7735

Abstract

Fine particles, including PM2.5, impact human health, especially in a megacity such as Jakarta. Meanwhile, precipitation is one of the most efficient mechanisms to reduce atmospheric particulate matter, including PM2.5. This study investigated the changes in PM2.5 concentrations before and after rain events along with the threshold of precipitation and a certain time lag that affects the reduction of PM2.5 concentrations in Jakarta from 2017 to 2019. PM2.5 concentration datasets from two observation sites at Central and South Jakarta were used in this study. The relative effect and scavenging probability of PM2.5 concentrations were calculated to seek further understanding of the effect of rain events on the decrease of PM2.5 concentrations using hourly data. A Non-Linear Distributed Pause Model was used in this study with hourly rainfall data and hourly air temperature that controlled the reduction in PM2.5 concentrations. This study indicates that higher precipitation provides greater influence to the decrease of PM2.5 concentration in both Central Jakarta and South Jakarta. The precipitation threshold for reducing PM2.5 concentrations in Central Jakarta is 5 mm of rainfall with no time lag and a maximum delay of up to 12 hours. The South Jakarta area is 5 mm of rainfall with a time lag of up to 10 hours. In addition, the results suggest an increase in the probability of the concentration of PM2.5 below the standard (SP) with rainfall and a certain time lag that was greater in South Jakarta, which was up to 19% compared to 11% in Central Jakarta
Perubahan Temperature Humidity Index (THI) di Pulau Jawa sejak 1981 hingga 2019 Qurrata A'yun Kartika; Rahmat Hidayat; Rista Hernandi Virgianto
Majalah Geografi Indonesia Vol 35, No 2 (2021): Majalah Geografi Indonesia
Publisher : Fakultas Geografi, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/mgi.63432

Abstract

Abstrak Pulau Jawa mengalami peningkatan jumlah penduduk dari waktu ke waktu. Peningkatan ini berdampak pada tingginya aktivitas antropogenik yang menghasilkan emisi yang diantaranya dapat menyebabkan perubahan suhu udara. Suhu udara sangat berkaitan dengan thermal stress yang mempengaruhi kenyamanan bahkan kesehatan manusia. Thermal stress dapat diukur dengan Temperature Humidity Index (THI) dengan suhu udara rata-rata permukaan dan Relative Humidity (RH) sebagai variabel bebas. Penelitian ini menganalisis sejauh mana perubahan suhu udara permukaan, RH dan THI terhadap waktu. Kemudian daerah dengan perubahan THI yang paling besar akan dianalisis keterkaitannya jumlah penduduk menggunakan korelasi Pearson. Berdasarkan hasil penelitian diketahui terjadi perubahan suhu udara udara permukaan sebesar -0.27 hingga 1.17⁰C diikuti perubahan RH sebesar -2.21% hingga 0.77% dan terjadi perubahan THI hingga 0,72⁰C sejak 1981 hingga 2019 terutama di pesisir utara bagian barat Pulau Jawa. Selain itu, THI di sekitar DKI Jakarta juga memiliki nilai korelasi simultan yang tinggi dengan jumlah penduduk sebesar 0,81, korelasi lag 1 tahun sebesar 0,69, sementara korelasi lag 2 tahun sebesar 0,67. Temuan ini mengindikasikan peningkatan jumlah penduduk berdampak terhadap peningkatan THI pada DKI Jakarta. Abstract Java has experienced an increase in population from time to time. This increase has an impact on high anthropogenic activity which results in emissions, which can cause changes in air temperature. Air temperature is closely related to thermal stress which affects comfort and even human health. Thermal stress can be measured by the Temperature Humidity Index (THI) with the average surface air temperature and Relative Humidity (RH) as the independent variable. This study analyzes the extent of changes in surface air temperature, RH and THI with time. Then the areas with the greatest THI changes will be analyzed for their correlation using the Pearson correlation. Based on the research results, it is found that there has been a change in surface air temperature of -0.27 to 1.17⁰C followed by changes in RH from -2.21% to 0.77% and there has been a change in THI to 0.72⁰C from 1981 to 2019, especially on the north coast of the western part of Java. In addition, THI around DKI Jakarta also has a high simultaneous correlation value with a population of 0.81, a 1-year lag correlation of 0.69, while a 2-year lag correlation of 0.67. These findings indicate an increase in population has an impact on increasing THI in DKI Jakarta. 
Simulation of Rainwater Harvesting Potential to Satisfy Domestic Water Demand Based on Observed Precipitation Data in Jakarta Rista Hernandi Virgianto; Qurrata Ayun Kartika
Journal of Engineering and Technological Sciences Vol. 53 No. 6 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.6.4

Abstract

Jakarta as the most populous urban center of Indonesia has a major problem related to clean water availability for the domestic needs of its residents, who mostly depend on the extraction of groundwater. The rooftop rainwater harvesting (RRWH) system is a solution to reduce the use of groundwater to satisfy domestic water needs. This study used demographic data and precipitation observation data from the rain gauge network in Jakarta to simulate the water supply from rainwater harvesting from 2010 to 2019 in each municipality. Three simulations were carried out to calculate the percentage of domestic water demand (DS) satisfied by RRWH based on the proportion of residential areas installed with RRWH (RA). The results showed that an RA value of 0.2 produced the lowest DS (approximately 11% to 18.7%), while an RA value of 0.3 produced a higher DS (approximately 16.3% to 28%). An RA value of 0.4 resulted in a DS of around 21.8% to 37.4%. Overall, the RRWH system could provide up to 30% of domestic water demand on average, with South Jakarta having the highest fulfillment of water needs with an average of 28% based on the three simulations, while Central Jakarta had the lowest with 16.4%.
Sea Surface Temperature Anomaly Characteristics Affecting Rainfall in Western Java, Indonesia Qurrata A'yun Kartika; Akhmad Faqih; I Putu Santikayasa; Amsari Mudzakir Setiawan
Agromet Vol. 37 No. 1 (2023): JUNE 2023
Publisher : PERHIMPI (Indonesian Association of Agricultural Meteorology)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/j.agromet.37.1.54-65

Abstract

Western Java is densely populated with high socio-economic activity. Climate-related disasters can be mitigated with the support of an understanding of systems that produce reliable climate predictions. One of the climate variables included in hydrometeorological disasters is rainfall. The characteristics of rainfall in Western Java cannot be separated from the sea surface temperature (SST) around the area. This study compares the relationship between SST and rainfall with singular value decomposition (SVD) and compares it with Pearson's correlation. SVD Model performance was evaluated using square covariance fraction (SCF) and Pearson correlation. The results showed that rainfall has a higher correlation with SST Anomaly (SSTA) by using SVD, with a correlation of about 0.63 in 6 to 9 months without lag time. Rainfall in western Java was closely related to the positive SSTA anomaly in southern Indonesia, especially the waters south of Java Island, and negative anomalies in other areas. Furthermore, atmospheric dynamic analysis showed that the positive coefficient expansion is followed by warmer SST, lower surface air pressure, higher water vapor, and higher rainfall, all were respective to their normal conditions around western Java. This study concludes that warmer SSTA around Western Java causes increased rainfall in western Java than normal and potentially impacts the hydrological disaster in West Java.